
COSMOS: RL-Enhanced Locality-Aware Counter Cache
Optimization for Secure Memory

Haoran Geng
University of Notre Dame
Notre Dame, IN, USA

hgeng@nd.edu

Xiaoyang Lu
Illinois Institute of Technology

Chicago, IL, USA
xlu40@illinoistech.edu

Yuezhi Che
Wuhan University
Wuhan, China

cheyuezhi@whu.edu.cn

Ziang Tian
Wuhan University
Wuhan, China

ziangtian@whu.edu.cn

Dazhao Cheng
Wuhan University
Wuhan, China

dcheng@whu.edu.cn

Xian-He Sun
Illinois Institute of Technology

Chicago, IL, USA
sun@illinoistech.edu

Michael Niemier
University of Notre Dame
Notre Dame, IN, USA
mniemier@nd.edu

X. Sharon Hu
University of Notre Dame
Notre Dame, IN, USA

shu@nd.edu

Abstract
Secure memory systems employing AES-CTR encryption face sig-
nificant performance challenges due to high counter (CTR) cache
miss rates, especially in applications with irregular memory ac-
cess patterns. These high miss rates increase memory traffic and
latency, as each CTR cache miss triggers additional DRAM accesses.
To address these bottlenecks and adapt to diverse access patterns,
we propose COSMOS (Counter Optimized Secure Memory Opera-
tion Scheme), a novel solution leveraging reinforcement learning
to reduce long memory access latency. COSMOS integrates two
RL-based specialized predictors: one for data location prediction
and another for CTR locality prediction, each with a well-defined
state space, action space, and reward function. The RL-based data
location predictor determines whether data reside on-chip or off-
chip after an L1 cache miss, enabling early CTR access for off-chip
predictions with minimal changes to the existing cache hierarchy.
The RL-based CTR locality predictor identifies CTRs with high
locality, supporting a locality-centric CTR cache (LCR-CTR) to im-
prove cache efficiency and reduce miss rates. COSMOS improves
performance over MorphCtr by 25% in for irregular memory access
applications, with minimal hardware overhead.

Keywords
secure memory systems; AES-CTR encryption; reinforcement learn-
ing; counter cache optimization; graph algorithms

ACM Reference Format:
Haoran Geng, Xiaoyang Lu, Yuezhi Che, Ziang Tian, Dazhao Cheng, Xian-
He Sun, Michael Niemier, and X. Sharon Hu. 2025. COSMOS: RL-Enhanced
Locality-Aware Counter Cache Optimization for Secure Memory. In 58th

This work is licensed under a Creative Commons Attribution 4.0 International License.
MICRO ’25, Seoul, Republic of Korea
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1573-0/2025/10
https://doi.org/10.1145/3725843.3756047

IEEE/ACM International Symposium on Microarchitecture (MICRO ’25), Octo-
ber 18–22, 2025, Seoul, Republic of Korea. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3725843.3756047

1 Introduction
Many companies are migrating their data to the cloud to take ad-
vantage of potential cost savings. However, securing sensitive and
private data remains a critical concern for various applications. In
cloud environments, companies lose control over physical access
to computing facilities, raising the risk of physical attacks where
malicious individuals with access can steal or tamper with sensi-
tive application data. To address these security challenges, leading
companies like Intel and AMD have developed secure memory
systems, such as Intel SGX [13] and AMD SEV [4]. Both system
use the Advanced Encryption Standard Counter Mode (AES-CTR)
[13] as their preferred memory encryption scheme to ensure data
confidentiality. In AES-CTR, a counter (CTR) is assigned to each
data block, which is incrementally updated and encrypted using
AES. This encrypted CTR is then XORed with the plaintext data to
produce the corresponding ciphertext for secure storage. The mem-
ory controller (MC) stores CTRs in DRAM. When a last-level cache
(LLC) miss occurs, the MC fetches the CTR associated with the
missing data block from DRAM. The CTR is then used to decrypt
the block and verify its integrity upon arrival.

AES-CTR is complemented by Message Authentication Codes
(MACs) and Merkle Trees (MTs) to prevent replay attacks [25, 71].
MACs ensure data authenticity, while MTs verify CTR integrity.
Under this scheme, each data block is associated with a CTR and a
MAC, both structured within a MTwhose root is securely stored on-
chip. While this combination of AES-CTR, MACs, and MTs provides
robust security, it introduces significant memory access overhead.
During each memory read access, the MAC and CTR are fetched
and verified against the MT root to ensure data authenticity and
CTR integrity. To prevent replay attacks, the CTR is incremented
with each memory write, acting as a timestamp to ensure MT veri-
fication detects and blocks any attempt to reuse old data or CTRs.

1

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3725843.3756047
https://doi.org/10.1145/3725843.3756047

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Haoran Geng and Xiaoyang Lu, et al.

Consequently, memory writes involve updating the MAC, incre-
menting the CTR for encryption, and accessing MT nodes for CTR
integrity verification. These additional security-specific memory
accesses significantly increase memory traffic, ultimately affecting
overall system performance.

To mitigate this overhead, a CTR cache is implemented in theMC
to reduce CTR DRAM accesses [13, 43, 47]. However, the large mem-
ory footprints and irregular access patterns of modern applications
can result in a high CTR cache failure rate [3, 5, 28, 36, 41]. Conse-
quently, even with the use of a CTR cache, CTR DRAM accesses
remain largely unmitigated, and the CTR cache instead adds latency
to the critical path for accessing CTRs. In order to improve CTR
cache hit rates, previous work has proposed Morphable CTR (Mor-
phCtr) [46], which allows a single CTR block to manage a larger
number of data blocks, thus improving CTR cacheability. How-
ever, as we will later demonstrate, even with a 1:128 CTR-to-data
block mapping ratio, applications with irregular access patterns
continue to suffer from high CTR cache miss rates, resulting in
underutilization of the CTR cache.

We observe that the high CTR cache miss rate in applications
with irregular memory access patterns is primarily due to the CTR
cache being accessed only after an LLC miss occurs. In such appli-
cations, the LLC miss rate is typically high, as hot data is already
cached in L1 and L2, leading to cold CTRs flowing into the CTR
cache. This leads to inefficient CTR cache utilization, as cold CTRs
are less likely to be accessed with a small reuse distance.

A recently proposed solution, EMCC [65], suggests moving the
CTR access earlier in the cache hierarchy, ideally within the L2
cache. EMCC demonstrates that placing the CTR cache at the L2
level allows more hot CTRs to enter the cache, significantly re-
ducing CTR miss rates. However, this solution requires complex
modifications to the L2 cache controller, which introduces imple-
mentation challenges.

We perform a comprehensive analysis of the performance impact
of the CTR cache behavior in secure memory systems (see Sec. 3),
which motivates the design of COSMOS (Counter Optimized Secure
Memory Operation Scheme). COSMOS is specifically designed to:
(1) reduce CTR access latency by predicting off-chip data requests
and fetching their corresponding CTRs directly, (2) accurately iden-
tify CTRs with high locality, and (3) implement a CTR cache with a
locality-centric replacement policy to increase CTR hit rates. The
COSMOS design focuses on the following technical aspects.

First, we propose a novel approach to accelerate off-chip CTR ac-
cesses while maintaining the existing cache hierarchy. Specifically,
we predict whether data is on-chip or off-chip immediately after an
L1 cache miss. If the data is predicted to be off-chip, we proactively
fetch the corresponding data and its CTR from the main memory
and CTR cache. This approach not only accelerates the off-chip
CTR accesses by removing the on-chip cache access latency from
the critical path, but also provides the opportunity to access the
CTR cache earlier after an L1 miss, ensuring that the CTR cache is
populated with hot CTRs. Reinforcement learning (RL) provides a
promising solution, enabling accurate predictions and adaptability
to varying access patterns across diverse applications [7, 35]. There-
fore, we propose a lightweight RL-based data location predictor that
adapts to varying memory access patterns, enabling speculative

fetching of data and CTRs directly from main memory and the CTR
cache, while requiring minimal hardware modifications.

Moreover, we observe that applications with irregular memory
access patterns continue to experience relatively high CTR cache
miss rates when accessing the CTR after an L1 cache miss. To
further optimize CTR access following data location prediction,
we focus on fully leveraging CTR locality within the CTR cache.
This requires a thorough understanding of CTR locality patterns,
which we address by employing an RL-based CTR locality predictor
to identify CTRs with high data locality after an L1 cache access.
Based on the CTR locality predictions, we design a CTR cache with
a locality-centric replacement (LCR) policy, which we call the LCR-
CTR cache, that retains CTRs identified as having good locality
for longer periods to improve the overall CTR cache hit rate. CTRs
identified as having good locality are marked and stored in the
LCR-CTR cache, while those with poor locality are prioritized for
eviction. By dynamically refining CTR locality predictions through
RL, the CTR cache efficiently retains high-locality CTRs, signifi-
cantly improving CTR cache hit rates and reducing CTR access
latency.

COSMOS outperforms MorphCtr [46] by 25% for irregular mem-
ory access applications. We also compare COSMOS with EMCC
[65], an optimized extension of MorphCtr, and observe that COS-
MOS outperforms EMCC by 10%. In particular, COSMOS achieves
these improvements with only 147KB of additional on-chip storage
overhead in the MC.

In summary, COSMOS offers the following key contributions:
• We present a comprehensive analysis of the CTR cache hit be-
havior of applications with irregular memory access pattern
in secure memory systems, evaluating its impact on perfor-
mance, and exploring the potential of various optimization
strategies.
• An RL-based data location predictor that predicts whether
data is on-chip or off-chip immediately after an L1 cache
miss. This enables earlier and more efficient CTR access in
the cache hierarchy, while allowing the CTR cache to be
populated with hot CTRs.
• An RL-based CTR locality predictor that identifies the lo-
cality characteristics of CTRs, distinguishing between those
with good and poor locality.
• An LCR-CTR cache that leverages RL-based CTR locality pre-
dictions to prioritize retaining CTRs with good locality. The
LCR-CTR dynamically adjusts CTR replacement decisions
based on access patterns, improving CTR cache hit rates.

2 Background
This section reviews AES-CTR based secure memory, split CTR,
MorphCtr, and RL.

2.1 AES-CTR Based Secure Memory
Memory encryption techniques use symmetric key encryption
methods, notably AES-CTR, to ensure the confidentiality of off-
chip data [17]. These methods are also combined with MAC and
MT to verify the integrity of the data [13]. Figure 1 illustrates the
AES-CTR encryption process. It combines a data block’s physi-
cal address (PA) with a CTR to generate ciphertext [18, 62]. The

2

COSMOS: RL-Enhanced Locality-Aware Counter Cache Optimization for Secure Memory MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea

AES_Enc

OTP

PA || CTR

Hash

Ciphertext MAC CTR

DRAM

On-Chip

CTR
cache

miss

Merkle
tree

Data miss from LLC
CTR
addr

Plaintext

Data DRAM request

Figure 1: AES-CTR memory protection scheme.

encryption is expressed as:

𝐶𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡 = 𝑃𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡 ⊕ AES_Enc(𝑃𝐴∥𝐶𝑇𝑅) .
Here, ∥ and ⊕ represent concatenation and XOR operations, re-
spectively. AES_Enc denotes AES encryption, which produces a
one-time pad (OTP) from the combination of the PA and CTR .

To ensure data integrity and authentication, anMAC is employed.
The MAC verifies that the data remains unaltered and authenticates
its origin. For a given ciphertext, the MAC is generated by hashing
the concatenation of the ciphertext with the PA and CTR. This
process is represented by the equation:

𝑀𝐴𝐶 = 𝐻𝑎𝑠ℎ(𝐶𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡 ∥(𝑃𝐴∥𝐶𝑇𝑅)),
where 𝐻𝑎𝑠ℎ denotes a cryptographic hash function that produces
a fixed-size output. During DRAM reads, the MACs are cross-
referenced to verify the integrity and authenticity of the data. How-
ever, MAC verification alone is not sufficient to prevent all attacks.
For instance, replay attacks can insert outdated data with its cor-
responding CTR and MAC, evading detection. To address this vul-
nerability, an MT structure is utilized [58]. As illustrated in Figure
1, CTRs form the leaf nodes of the MT, with each internal node
contains a hash derived from its children, and the root hash stored
securely on-chip. This structure allows for the detection of any
CTR discrepancies during tree traversal, thus protecting against
tampering and replay attacks.

AES-XTS, used in Intel SGXv2 [72] and AMD SEV [1, 2, 4], elim-
inate the need for CTR, thus avoiding the overhead challenges
present in AES-CTR [37]. It uses a two-key encryption model,
one for ciphertext generation and one as a tweak derived from
physical addresses. Although this offers efficiency, AES-XTS lacks
inherent support for integrity verification and is vulnerable to ci-
phertext side channel attacks [32, 67], making it less secure than
AES-CTR+MT. Given these limitations, we focus on the more secure
AES-CTR+MT design, which supports replay protection - crucial
for high-assurance systems.

2.2 Split CTR
The two main challenges with AES-CTR based secure memory are
(1) the high CTR cache miss rate and (2) the CTR storage overhead.
The high CTR cache miss rate occurs because each data block
requires a unique CTR value, leading to frequent accesses to the CTR
cache. Misses in the CTR cache can lead to high DRAM CTR access

latency, which significantly impacts overall performance. The CTR
storage overhead arises from the need to store an increasing number
of CTRs as the number of data blocks grows.

To address the challenge of CTR management, Yan et al. [68]
proposed a split CTR scheme for efficient memory encryption. In
this scheme, the CTR block is divided into two parts: a small per-
block minor CTR and a larger major CTR shared by multiple blocks
within an encryption page. The split CTR scheme allows one CTR
block to map to multiple data blocks (typically 64). This increased
granularity of the CTR block leads to higher CTR cache hits and re-
duced CTR storage overhead compared to the standard CTR scheme
[68].

The encryption process using split CTRs is similar to the standard
AES-CTR mode, with concatenated major and minor CTRs used to
generate the one-time pad:

𝐶𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡 = 𝑃𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡 ⊕ AES_Enc(𝑃𝐴∥𝐶𝑇𝑅𝑀 ∥𝐶𝑇𝑅𝑚),
where ∥ represents the bitwise concatenation operation, ⊕ repre-
sents the XOR operation,𝐶𝑇𝑅𝑀 denotes the major CTR, and𝐶𝑇𝑅𝑚
denotes the minor CTR.

MorphCtr [46] improves split CTRs by offering a 1:128 ratio
of CTR to data blocks, doubling the density. Each MorphCtr CTR
block comprises a 57-bit major CTR, 7-bit format field, and space
for 128 3-bit minor CTRs. MorphCtr switches between Zero CTR
Compression (ZCC) for sparse CTR usage and a uniform format for
dense CTR usage.

2.3 Reinforcement Learning
RL [45, 49] is a machine learning approach that enables an agent
to autonomously learn how to maximize cumulative rewards by
interacting with the environment and obtaining feedback from its
actions. The interaction between the agent and the environment at
timestep 𝑡 is represented as a tuple (𝑆𝑡 , 𝐴𝑡 , 𝑅𝑡+1), where the agent
observes the state of the environment 𝑆𝑡 , selects an action 𝐴𝑡 , and
the environment transitions to a new state 𝑆𝑡+1 while providing a
reward 𝑅𝑡+1 to the agent. The goal of the agent is to discover an
optimal policy that maximizes the total cumulative reward from the
environment over the long term. To achieve this, the agent must
consider the long-term impact of each action rather than focus
solely on immediate rewards. The expected cumulative reward
associated with the execution of an action 𝐴 in a given state 𝑆 is
quantified as the Q-value of the state action pair, 𝑄 (𝑆,𝐴) [24].

SARSA [45] is an on-policy RL algorithm used to learn a Markov
decision process policy. The agent interacts with the environment
and updates the Q-value based on the current state 𝑆𝑡 , current
action 𝐴𝑡 , reward 𝑅𝑡+1 received, next state 𝑆𝑡+1, and next action
𝐴𝑡+1:

𝑄 (𝑆𝑡 , 𝐴𝑡) ← 𝑄 (𝑆𝑡 , 𝐴𝑡) + 𝛼 [𝑅𝑡+1 + 𝛾𝑄 (𝑆𝑡+1, 𝐴𝑡+1) −𝑄 (𝑆𝑡 , 𝐴𝑡)] .
The learning rate 𝛼 determines how quickly the Q-values are up-
dated, and the discount factor 𝛾 influences how future rewards are
weighed against immediate rewards. As 𝛾 approaches 0, the agent
becomes more "opportunistic", prioritizing immediate rewards. As𝛾
increases, the agent becomes more "far-sighted", aiming for higher
long-term rewards.

RL has proven particularly effective for problems involving
rapidly changing environments [38, 56], making it well-suited for

3

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Haoran Geng and Xiaoyang Lu, et al.

DFS BFS TC GC PR CC SP DC0

1

2

3

4

5

6

7

8

M
em

or
y

Tr
af

fic

1e8
Data reads
Data Writes

CTR reads
MAC reads

MT reads
rec-enc write

0

20

40

60

80

100

CC
 M

iss
 R

at
e

(%
)

CC miss rate

Figure 2: Comparison of memory traffic and CTR cache miss
rate across various graph algorithms: non-protect (NP) vs.
Secure Memory (w MorphCtr).

handling the CTR accesses of memory-intensive applications. The
RL framework has been successfully applied to various memory
system optimization tasks, demonstrating its versatility and effec-
tiveness [7, 20, 26, 33, 35, 51, 60, 70].

3 Observations and Motivations
In this section, we first highlight the limitations of current memory
encryption methods due to high CTR cache miss rates. Then, we
discuss specific motivations for our proposed work.

3.1 Characterizing the CTR Cache Problem
Workloads with irregular memory access patterns often suffer
from high memory traffic in secure memory systems [65]. While
SGXv1 limited performance due to its small secure memory re-
gion (<128MB), real-world applications demand much larger mem-
ory footprints. As secure memory scales, CTR management under
AES-CTR+MT becomes a key bottleneck, especially in irregular
workloads, due to frequent CTR cache misses and the resulting
MT traversals. To better understand the root cause, we perform
experiments to characterize CTR access behavior.

We simulate a secure memory system [13] with the MorphCtr
scheme [46] using Gem5 [8]. The system is modeled as a 4-core
setup with a 8MB shared LLC and 128KB CTR cache per core (see
Sec. 5 for further details). We use graph benchmarks fromGraphBIG
[39], evaluated on the GitHub developer social network dataset
[44]. The evaluated algorithms include Depth-First Search (DFS),
Breadth-First Search (BFS), GraphColoring (GC), Page Ranking (PR),
Triangle Counting (TC), Connected Components (CC), Shortest
Path (SP), and Degree Centrality (DC), all executed using 4 threads.

Figure 2 shows that most memory traffic comes from MT nodes
read, not re-encryption writes. In MorphCtr, re-encryption only
occurs after 67 updates to the same counter—something rare in
graph workloads with irregular access patterns. As a result, re-
encryption traffic is negligible.

In contrast, CTR access overhead is significant. Each CTR re-
trieved from DRAMmust be authenticated by traversing a MT from
leaf to root[72], incurring multiple reads from MT nodes per access.
For example, with a 32GB memory and 64B cache line size, there
are approximately 537 million cache lines. Since each MorphCtr
CTR covers 128 lines, verifying a single CTR requires access to the
log2 (537M/128) ≈ 22 MT nodes. These MT nodes reads dominate
the overall memory traffic, particularly when CTR cache miss rates

DFS PR GC0

25

50

75

100

CT
R

Ca
ch

e
M

iss
 R

at
e

(%
) CTR Cache Size

128KB 256KB 512KB 1MB 2MB

Figure 3: CTR cache size vs. miss rate for graph workloads
with irregular access patterns.

DFS BFS TC GC PR CC SP DC0

1

2

3

4

5

6

7

8

M
em

or
y

Tr
af

fic

1e8
Data reads
Data writes

CTR reads
MAC reads

MT reads
rec-enc write

0

20

40

60

80

100

CC
 M

iss
 R

at
e

(%
)

CC miss rate after L1
CC miss rate after LLC

Figure 4: Comparison of memory traffic and CTR cache miss
rate across various graph algorithms: Secure Memory access
CTR after L1 vs. Secure Memory access CTR after LLC.

are high in these graph applications where the CTR cache miss rate
is around 90%.

Key Insight: In secure memory, each CTR cache miss incurs
not only DRAM access but also multiple integrity checks via MT
traversal. For workloads with irregular access patterns, improving
the CTR cache hit rate can significantly reduce total memory traffic
and unlock large performance gains.

3.2 CTR Cache Hit is All You Need
To address the memory traffic bottleneck caused by CTR cache
misses, we explore two key approaches: scaling the CTR cache size
and modifying the CTR access point in the memory hierarchy.

3.2.1 Limited Gains from Scaling CTR Cache Size. If CTR cache
misses are the main source of memory overhead, a natural question
arises: why not simply increase the CTR cache size to improve hit
rates? To explore this, we evaluated three graph applications—DFS,
PR, and GC—with varying CTR cache sizes from 128KB to 2MB.

Figure 3 shows the results. Despite an 8× increase in cache ca-
pacity, the CTR cache miss rate decreases only by around 5%. This
indicates a poor trade-off between hardware overhead and actual
cache efficiency.

The primary reason for this behavior is that CTRs are accessed
only after an LLC miss, meaning the CTR cache effectively behaves
like an "L4" cache. For workloads with irregular access patterns,
data with strong locality are already captured by L1, L2 and LLC
caches. As a result, the CTR cache is predominantly populated with
counters associated with data that exhibit poor reuse, making the
traditional CTR cache scaling ineffective.

3.2.2 Enabling Early CTR Access to Improve Locality. Another solu-
tion is to allow CTRs to be accessed earlier in the cache hierarchy,

4

COSMOS: RL-Enhanced Locality-Aware Counter Cache Optimization for Secure Memory MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea

Baseline Next-line Stride Berti RRIP SHiP Mockingjay50

55

60

65

70

CT
R

Ca
ch

e
M

iss
 R

at
e

(%
)

CTR Cache Miss Rate (%)

0.20

0.25

0.30

0.35

0.40

IP
C

IPC

Figure 5: CTR cache miss rate and IPC for Intel SGX with
MorphCtr on DFS, showing CTR access after L1 misses when
using Next-Line, Stride, Berti prefetchers, and RRIP, SHiP
and Mockingjay replacement policies.
enabling access streams with better locality to populate the CTR
cache and improve hit rates.

To evaluate this idea, we conduct an experiment where we as-
sume CTRs are accessed after an L1 miss instead of after the LLC,
disregarding the hardware constraints required for such early ac-
cess. As shown in Figure 4, this change reduces the CTR cache
miss rate by an average of 25% across graph applications. Although
total read and write activity increases slightly (by 5%), the number
of reads from the MT nodes – triggered by CTR misses – drops
significantly (by 25%).

This leads to the first key insight of this paper: enabling
earlier access to CTRs within the cache hierarchy allows CTRs
with better locality to populate the CTR cache sooner, improving
cache hit rate and reducing secure memory traffic.

3.3 Cache Optimization in CTR Cache
Given the importance of CTR cache hits, a natural follow-up ques-
tion is: in addition to enabling early CTR access, can existing cache
optimization techniques effectively address CTR cache miss chal-
lenges?Traditional cache optimization methods have been success-
fully applied to various memory system problems. However, as
we demonstrate in the following section, these conventional ap-
proaches face significant limitations when applied to CTR cache
optimization, particularly for applications with irregular memory
access patterns.

We evaluated the performance impact of these optimizations
on the CTR cache within the Intel SGX system integrated with
MorphCtr, using a DFS benchmark when accessing CTRs after L1
cache misses (§5 details the methodology). We evaluate six cache
optimization techniques. These include three prefetchers: Next-
Line, Stride [11, 12], and Berti [42], a state-of-the-art prefetcher.
We also evaluate three replacement policies: RRIP [21], SHiP [9],
and Mockingjay [50], a state-of-the-art replacement policy. We
configure RRIP and SHiP with reference prediction value (RRPV)
parameters, setting an initial value of 2 and a maximum value of 3
for RRIP. Additionally, SHiP uses a 16,384 entry SHCT table with
a maximum RRPV of 7. To model Mockingjay [50], we maintain
a sampled cache with 4,096 entries that dynamically learns reuse
distances. For each cache access, Mockingjay updates the estimated
time of arrival (ETA) values and evicts the block with the highest
ETA. Figure 5 shows that, compared to the baseline using only the
LRU policy, neither advanced prefetching nor replacement policies
significantly reduced the CTR cache miss rate or improved IPC.

Both the Next-line, Stride and Berti prefetchers show only mar-
ginal reductions in the CTR cache miss rate while simultaneously
lowering overall IPC. This ineffectiveness can be attributed to two

primary factors: (1) Poor locality of CTRs in applications with irreg-
ular memory access patterns, leading to low prefetcher accuracy.
Specifically, the next-line prefetcher achieved a prefetch accuracy
of just 1.02%, while the Stride prefetcher performed even worse,
with an accuracy of 0.54% and Berti with an accuracy of 5.43%. (2)
The need for integrity checks on CTR accesses from DRAM, re-
gardless of prefetch accuracy. This means that incorrect prefetches
still trigger unnecessary integrity checks, introducing additional
overhead and negatively impacting performance.

The smart replacement policies, RRIP, SHiP and Mockingjay,
also failed to improve performance, resulting in slightly lower CTR
cache miss rates compared to the baseline. The primary reason
for their ineffectiveness is the irregular access patterns of the ap-
plication, which significantly reduce the accuracy of RRIP’s pre-
diction and hinder SHiP’s ability to identify and retain CTRs that
are likely to be re-referenced. Mockingjay [50] behaves similarly
to SHiP, as shown in Figure 5. While Mockingjay observes longer
access patterns, its decision-making is governed by fixed heuris-
tics rather than adaptive learning. Unlike traditional data cache
accesses, where reuse distance predictions are effective, CTR ac-
cesses in irregular memory applications target a deeper memory
hierarchy, exhibiting weak locality and highly variable reuse behav-
ior. As a result, Mockingjay’s heuristic-based eviction strategy is
less effective. Automated techniques are needed that can accurately
predict and adapt to complex access patterns in diverse workloads.

3.4 Leveraging Reinforcement Learning
To optimize the performance of CTR accesses in secure memory
systems, we need to address two critical tasks: (1) enabling early
CTR access after L1 cache misses, and (2) enhancing CTR cache
efficiency by leveraging CTR locality. We design two RL-based pre-
dictors to tackle these tasks: (1) predicting whether data require
DRAM access after L1 misses, enabling early CTR fetching when
necessary, and (2) predicting and leveraging CTR locality to popu-
late the CTR cache with high-locality CTRs. We argue that RL is
inherently suited for these tasks due to the following advantages.

Adaptivity. Both predictors must adapt to the evolving data
access patterns of memory-intensive applications. RL provides a
natural solution to this challenge by continuously learning and ad-
justing based on real-time feedback. Unlike traditional prefetching
[11, 12] or cache replacement schemes [9, 21], which rely on static
rules or assumptions rooted in human intuition about application
behaviors, RL dynamically adapts to varying and rapidly shifting
patterns. This adaptability ensures that both predictors function as
autonomous agents, learning through continuous interaction with
the memory system.

Online learning. Unlike offline learning-based approaches, an
RL agent uses an online learning approach. Online learning enables
the RL agent to continuously adapt its decision-making by itera-
tively optimizing its policy based on rewards received from the
environment, eliminating the need for expensive offline training
and fine-tuning. Online learning ensures adaptability while simul-
taneously reducing the overhead and complexity of pre-trained
models.

Ease of Implementation. Prior works [14, 34, 52, 69] have ex-
plored sophisticated machine learning models for access pattern

5

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Haoran Geng and Xiaoyang Lu, et al.

CPU

LLC

RL-based
data location

predictor

L1

L2

RL-based
CTR locality

predictorCTR
Requests

CTR
access

Predicted
CTR’s

locality

LCR-
CTR

cache

DRAM

Data
Requests

COSMOS

Data
access

Figure 6: Overall Architecture of COSMOS.

recognition. While these models demonstrate promising accuracy,
their large sizes often exceed on-chip storage limits, and their high
computational demands result in unacceptable inference latencies
for real-time systems. In contrast, RL can be efficiently implemented
in hardware using lookup tables (Section 4), introducing minimal
complexity and requiring only small hardware modifications, mak-
ing it a practical choice for adoption in memory systems.

While perceptrons have been used in cache and memory opti-
mizations [6, 22, 23, 27, 29, 61], RL offers unique advantages for
access behavior prediction. First, RL models state transitions and
capture access patterns over time, whereas perceptrons treat each
access independently, missing temporal relationships. Second, RL
optimizes cumulative reward by accounting for both immediate
and delayed impacts of decisions, while perceptrons focus only on
short-term, per-access classification. Finally, RL actively explores
uncertain states, enabling robustness across changing workload
phases. Perceptrons are deterministic and offer limited generaliza-
tion under dynamic or irregular memory behaviors.

Based on the inherent qualities of RL, our second key idea
is to employ two separate RL predictors: one for data loca-
tion prediction to enable early CTR access, and another for
CTR locality prediction to optimize cachemanagement. Each
predictor is designed to solve a different optimization prob-
lem with its own well-defined state space, action space, and
reward function. By focusing on specific tasks, these RL-based
predictors work autonomously while working collaboratively to
improve the overall performance of secure memory systems.

4 COSMOS Design
Building on our key ideas from Section 3, we propose COSMOS, as
illustrated in Figure 6. COSMOS implements these ideas through
three core components: (1) a CTR locality predictor to identify
CTRs with good locality, (2) a data location predictor to enable
early CTR access by predicting data location after L1 misses, and (3)
an LCR-CTR cache that optimizes CTR cache management based
on the predicted CTR locality. In this section, we first define the
RL primitives used in COSMOS and then detail the RL-based CTR
locality predictor, the LCR-CTR cache, and the RL-based data loca-
tion predictor. Finally, we discuss the hyperparameters chosen for
the two predictors and analyze the hardware overhead of COSMOS.

4.1 RL Formulations for COSMOS
We formulate both CTR locality prediction and data location pre-

diction as RL problems, each tailored to address a specific challenge
in optimizing CTR accesses. RL predictors interact with the proces-
sor and the secure memory system, leveraging RL to dynamically
adapt to memory access patterns.

4.1.1 CTR Locality Prediction RL Formulation. With each CTR ac-
cess, the locality predictor observes the key memory access feature
as the state to classify the locality of the CTR. Following each action,
the predictor receives a reward based on the accuracy of its decision,
allowing for continuous refinement and improvement in the preci-
sion of the classification. These CTR locality predictions provide
valuable information for the LCR-CTR cache, which improves the
overall CTR cache efficiency.

State. The state is defined by each CTR access. We construct the
state space by hashing the physical address of the CTR to capture
its locality characteristics. Specifically, bits 6 to 47 of the physi-
cal address, corresponding to the page number, are used as input
for hashing. To achieve uniform state distribution, we employ a
variant of the splitmix64 hashing function [63], leveraging prime
multipliers to generate well-distributed state indices. This hash-
ing approach creates a compact state representation that captures
spatial locality patterns within a certain address range, whereas
temporal locality is inherently captured through repeated accesses
to the same hashed state.

Action. The action for the CTR locality prediction is to classify
whether the accessed CTR has good locality or bad locality. Once
the agent makes this determination, it tags the CTR’s locality clas-
sification and sends this information to the LCR-CTR cache. CTRs
identified as having good locality are prioritized and retained in
the cache, while those with bad locality are deprioritized or marked
for eviction.

Observable. The observable for the CTR locality prediction
agent is derived from the CTR Evaluation Table (CET), a lightweight,
LRU-managed buffer that tracks the CTR’s state and access history
over time. For each CTR access, its locality prediction (good or
bad) and the current state are recorded in the CET. This observable
data enables the evaluation of prediction accuracy and subsequent
refinement of the RL policy.

Rewards. We define six rewards for the CTR locality predic-
tor: 𝑅𝐶_ℎ𝑔 , 𝑅𝐶_ℎ𝑏 , 𝑅𝐶_𝑚𝑏 , 𝑅𝐶_𝑚𝑔 , 𝑅𝐶_𝑒𝑔 , and 𝑅𝐶_𝑒𝑏 . Rewards are
assigned based on the CTR’s observed behavior in the CET: (1)
CET hit (good locality): A positive reward (𝑅𝐶_ℎ𝑔) is given for
correct good locality predictions, while a penalty (𝑅𝐶_ℎ𝑏) is applied
for incorrect bad locality predictions. (2) CET miss (bad locality):
A positive reward (𝑅𝐶_𝑚𝑏) is given for correct bad locality predic-
tions, while a penalty (𝑅𝐶_𝑚𝑔) is applied for incorrect good locality
predictions. (3) CET eviction (indicating bad locality):A penalty
(𝑅𝐶_𝑒𝑔) is given for evicted entries that were misclassified as having
good locality, while a reward (𝑅𝐶_𝑒𝑏) is assigned for evicted entries
with bad locality predictions.

4.1.2 Data Location Predictor RL Formulation. With every L1 cache
miss, the data location predictor observes the key feature of the
data access as the state to predict the location of the data block. For
off-chip predictions, COSMOS speculatively accesses the CTR cache
earlier, removing on-chip cache access latency from the critical path.
After each prediction, the predictor receives a reward based on its
accuracy, enabling continuous improvement in decision-making.

State. The state for the data location predictor is triggered by
each L1 cache miss. Upon an L1 miss, the state space is constructed
using the same address ranges and hashing mechanism detailed

6

COSMOS: RL-Enhanced Locality-Aware Counter Cache Optimization for Secure Memory MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea

CTR RL Training

CTR RL Decision

Data RL Training

Data RL Decision

L1

L2

LLC

data
addr Addr

Hashing

Data
state Data Q-table

Off-chipOn-chip

Ds1

…

Dsn

Prediction
On chip
action

Off chip
action Data DRAM

access

CTR Q-table

Bad LocGood Loc

Cs1

…
Csn

CTR with
marked
locality

CTR DRAM
access

CET
Loc

Cs1

…
Csn

CTR
state

On-chip?

A B

C
D

F

G H

I

J

K
E

LCR-CTR
Cache

Addr
Hashing

Good/Bad?

CTR
addr

Reward for L2/LLC hit/miss

Reward for CET hit/miss

Reward for CET evictedUpdate

Update

Figure 7: RL designs of COSMOS: (left) RL-based data location prediction; (right) RL-based CTR locality prediction

in the CTR locality predictor RL formulation, ensuring consistent
capture of spatial and temporal characteristics.

Action. The action for the data location predictor is to deter-
mine whether the requested data block resides on-chip (in L2/L3
cache) or off-chip (in DRAM). Based on this classification, COS-
MOS performs a standard sequential L2, then L3 cache access for
on-chip predictions or directly fetches the data from DRAM and re-
trieves the corresponding CTR from the LCR-CTR cache for off-chip
predictions following an L1 miss.

Observable. Regardless of the data location prediction, COS-
MOS concurrently accesses the cache hierarchy for each data re-
quest to validate the prediction. The actual location of the data
block—whether on-chip or off-chip—serves as feedback to evaluate
prediction accuracy and dynamically refine the decision-making of
the data location predictor.

Rewards.We define four rewards for the data location predictor:
𝑅𝐷_ℎ𝑖 , 𝑅𝐷_𝑚𝑜 , 𝑅𝐷_ℎ𝑜 , and 𝑅𝐷_𝑚𝑖 . Rewards are assigned to evaluate
the correctness of the prediction by comparing it with the actual
location of the data: (1) Data is on-chip: A positive reward (𝑅𝐷_ℎ𝑖)
is given when the predictor correctly classifies the data as on-chip.
Conversely, a penalty (𝑅𝐷_ℎ𝑜) is applied when the predictor incor-
rectly classifies the data as off-chip. (2) Data is off-chip: A positive
reward (𝑅𝐷_𝑚𝑜) is given when the predictor correctly classifies the
data as off-chip. Conversely, a penalty (𝑅𝐷_𝑚𝑖) is applied when the
predictor incorrectly classifies the data as on-chip.

4.2 RL-based CTR Locality Predictor
The RL-based CTR locality predictor operates through two parallel
processes: decision and training. These processes utilize two key
hardware structures: a CTR Q-table for maintaining state-action
Q-values and a CET, an LRU-managed buffer that evaluates the
effectiveness of predictions over a defined temporal window. Figure
7 (right) shows the design, with Algorithm 1 providing details.

CTR RL Decision Process. Upon a CTR access, COSMOS cre-
ates a state representation by hashing specific bits of the physical
address (F) (Algorithm 1 line 2). Using the generated state, COS-
MOS queries the CTR Q-table to retrieve Q-values for all poten-
tial actions (G) (Algorithm 1 line 3). The action with the highest
Q-value is selected as the predicted locality of the CTR, with occa-
sional random actions chosen to facilitate exploration and improve

Algorithm 1 COSMOS RL-based CTR Locality Prediction Algorithm

1: procedure COSMOS CTR Prediction(ctr addr)
2: S hash address(ctr addr)
3: A maxa Q(S, a) or random action() with ✏C
4: if A is good locality then
5: Mark the CTR as good locality
6: else
7: Mark the CTR as bad locality
8: end if
9: nearby S {hash address(addr) | addr 2 [ctr addr�32, ctr addr+32]}

10: cet result Check CET for any state in nearby S
11: if cet result is hit then
12: R if A is good locality then RC hg else RC hb

13: else
14: R if A is good locality then RC mg else RC mb

15: end if
16: S2 CET.head.state; A2 CET.head.action
17: Q-table: Q(S, A) Q(S, A) + ↵C [R + �C maxa Q(S2, A2)�Q(S, A)]
18: Insert (S, A) into CET
19: if CET entry evicted then
20: R if evicted entry.A is good locality then RC eg else RC eb

21: s evicted entry.state; a evicted entry.action
22: Q-table: Q(s, a) Q(s, a) +↵C [R + �C maxa Q(S2, A2)�Q(s, a)]
23: end if
24: end procedure

1

long-term predictions (Algorithm 1 lines 4-8). The predicted local-
ity is tagged and passed to the LCR-CTR cache for further cache
management (H).

CTR RL Training Process. COSMOS leverages the CET to
continuously evaluate and refine CTR locality predictions (I). For
each new CTR request, COSMOS checks if the hashed address of
the request or its nearby CTRs (within an address range of ±32)
matches an entry in the CET (Algorithm 1 line 9). A match (CTR
hit) indicates good locality, suggesting that the CTR or a nearby
address with strong spatial locality has been accessed again within a
defined temporal window. For such hits, COSMOS assigns a reward
𝑅𝐶_ℎ𝑔 for correct good locality predictions or a penalty 𝑅𝐶_ℎ𝑏 for
incorrect bad locality predictions (Algorithm 1 line 12). Conversely,
CETmisses indicate poor locality. For suchmisses, COSMOS assigns
a reward 𝑅𝐶_𝑚𝑏 for correct bad locality predictions or a penalty
𝑅𝐶_𝑚𝑔 for incorrect good locality predictions (J) (Algorithm 1 line
14) . Once the reward is determined, the state, action, and reward of
the current CTR request are used to update the CTR Q-table directly.
Subsequently, the corresponding state-action pair is recorded in
the CET.

When a CET entry is evicted, it indicates that neither the evicted
CTR nor its nearby CTRs have been accessed for an extended period

7

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Haoran Geng and Xiaoyang Lu, et al.

Algorithm 2 LCR-CTR Cache Replacement Policy

1: procedure LCR-CTR Replacement(set)
2: evict candidate None
3: max bad score �1
4: min good score 1
5: for all cache line in set do . Only within the specific set
6: if cache line.locality flag = 0 then . Bad locality
7: if cache line.locality score >max bad score then
8: evict candidate cache line
9: max bad score cache line.locality score

10: end if
11: else . Good locality
12: if evict candidate = None then
13: if cache line.locality score <min good score then
14: evict candidate cache line
15: min good score cache line.locality score
16: end if
17: end if
18: end if
19: end for
20: evict evict candidate
21: end procedure

Algorithm 3 RL-based Data Location Prediction Algorithm

1: procedure COSMOS Data Prediction(addr)
2: S hash address(addr)
3: A maxa Q(S, a) or random action() with ✏D
4: Perform normal L2 and LLC cache access
5: if A is o↵-chip then
6: Initiate DRAM fetch and CTR access
7: end if
8: if L2 or LLC hit then
9: R if A is on-chip then RD hi else RD ho

10: if R = RD ho then
11: Kill current data DRAM process and continues the CTR access
12: end if
13: else
14: R if A is on-chip then RD mi else RD mo

15: if R = RD mi then
16: Perform DRAM fetch and CTR access
17: end if
18: end if
19: a if (L2 or LLC hit) then ON CHIP else OFF CHIP
20: Q-table: Q(S, A) Q(S, A) + ↵D[R + �D maxa Q(S, a)�Q(S, A)]
21: end procedure

2

(Algorithm 1 line 19). In such cases, COSMOS assigns final rewards
to the corresponding evicted state-action pair: 𝑅𝐶_𝑒𝑏 for correct bad
locality predictions or 𝑅𝐶_𝑒𝑔 for incorrect good locality predictions
(K) (Algorithm 1 line 20). This process further refines the CTR
Q-table .

4.3 LCR-CTR Cache
The goal of the LCR-CTR cache is to ensure that CTRs predicted
to have good locality remain in the cache for the longest duration,
thereby increasing the likelihood of CTR cache hits. Each cache line
in the LCR-CTR cache includes a 1-bit flag indicating the predicted
locality: a value of 1 denotes good locality, while 0 denotes bad
locality. Additionally, each line contains an 8-bit score representing
the corresponding locality score derived from the CTR Q-table.

Algorithm 2 outlines the detailed replacement policy in LCR-
CTR cache. The replacement policy is designed to prioritize CTR
blocks with good locality within each cache set, ensuring optimal
cache utilization. Within a specific set, the primary eviction targets
are blocks predicted to have bad locality (indicated by a 0 in the 1-
bit flag). Among these, the LCR-CTR cache first evicts the CTR with
the highest bad locality score (Algorithm 2 lines 5-10). If all blocks
in the set are marked as having good locality, LCR-CTR cache evicts
the block with the lowest good locality score (Algorithm 2 lines 12-
16). This hierarchical approach allows the LCR-CTR cache to retain
high-scoring good locality CTRs for longer periods within each
set, thereby maximizing cache utilization and improving overall
performance.

4.4 RL-based Data Location Predictor
COSMOS employs an RL-based data location predictor to enable
early CTR access by determining whether the requested data resides
on-chip or in DRAM. The predictor utilizes a data Q-table to store
state-prediction pairs and operates through parallel decision and
training processes, as illustrated in Figure 7 (left) and detailed in
Algorithm 3.

Data RL Decision. For decision-making, COSMOS hashes the
data’s physical address to create a state (A) (Algorithm 3 line 2),
queries the Q-table (B) (Algorithm 3 line 3), and performs an action
based on the prediction. For on-chip predictions, COSMOS executes

Algorithm 2 LCR-CTR Cache Replacement Policy

1: procedure LCR-CTR Replacement
2: evict candidate None
3: max bad score �1
4: min good score 1
5: for all cache line in LCR-CTR cache do
6: if cache line.locality flag = 0 then . Bad locality
7: if cache line.locality score >max bad score then
8: evict candidate cache line
9: max bad score cache line.locality score

10: end if
11: else . Good locality
12: if evict candidate = None then
13: if cache line.locality score <min good score then
14: evict candidate cache line
15: min good score cache line.locality score
16: end if
17: end if
18: end if
19: end for
20: evict evict candidate
21: end procedure

Algorithm 3 RL-based Data Location Prediction Algorithm

1: procedure COSMOS Data Prediction(addr)
2: S hash address(addr)
3: A maxa Q(S, a) or random action() with ✏D
4: Perform normal L2 and LLC cache access
5: if A is o↵-chip then
6: Initiate DRAM fetch and CTR access
7: end if
8: if L2 or LLC hit then
9: R if A is on-chip then RD hi else RD ho

10: if R = RD ho then
11: Kill current data DRAM process and continues the CTR access
12: end if
13: else
14: R if A is on-chip then RD mi else RD mo

15: if R = RD mi then
16: Perform DRAM fetch and CTR access
17: end if
18: end if
19: a if (L2 or LLC hit) then ON CHIP else OFF CHIP
20: Q-table: Q(S, A) Q(S, A) + ↵D[R + �D maxa Q(S, a)�Q(S, A)]
21: end procedure

2
standard cache accesses, whereas off-chip predictions trigger imme-
diate DRAM data accesses and LCR-CTR retrievals (C), conducted
concurrently with cache hierarchy checks (Algorithm 3 lines 4–6).

Data RL Training. Running parallel to the decision process, the
training process updates the Q-table based on prediction accuracy.
After each decision, COSMOS checks the actual location of the
data block by concurrently accessing the cache hierarchy (D) and
compares it with the initial prediction. Rewards are subsequently
assigned based on this comparison (E) (Algorithm 3 line 2 8-18).
Correct predictions receive positive rewards (𝑅𝐷_ℎ𝑖 and 𝑅𝐷_𝑚𝑜),
while incorrect predictions incur penalties (𝑅𝐷_ℎ𝑜 and 𝑅𝐷_𝑚𝑖) (Al-
gorithm 3 line 12, 14). The data Q-table is updated immediately
after the reward for the current prediction is determined, using the
Q-learning rule (Algorithm 3 line 20).

COSMOS manages data and CTR accesses based on prediction
outcomes: (1) For correct on-chip predictions, data follows standard
cache hierarchy access (Algorithm 3 line 4); (2) For incorrect on-
chip predictions, after cache misses, COSMOS falls back to CTR
cache and DRAM access (Algorithm 3 line 16); (3) For correct off-
chip predictions, COSMOS bypasses the cache hierarchy for direct
DRAM and CTR cache access (Algorithm 3 line 6); and (4) For
incorrect off-chip predictions, COSMOS halts DRAM access but
maintains CTR cache access to exploit potential locality (Algorithm
3 line 11). By integrating data location prediction with efficient
management of data and CTR accesses, COSMOS enhances overall
performance without incurring potential losses.

4.5 Hyperparameter and Reward Value
Selection

COSMOS utilizes the 𝜖-greedy [57] method to balance exploration
and exploitation in both data and CTR locality prediction. With
probability 𝜖 , it explores through random actions; otherwise, it
exploits the learned policy by selecting the highest Q-value action.

Selecting hyperparameters involves defining reasonable ranges,
performing initial tests with various combinations, and evaluating
performance metrics to identify optimal values. The learning rate
(𝛼𝐷 , 𝛼𝐶), the discount factor (𝛾𝐷 , 𝛾𝐶), and the exploration rate (𝜖𝐷 ,
𝜖𝐶) -with 𝛼𝐷 , 𝛾𝐷 , 𝜖𝐷 originating from the RL-based data location
predictor (Algorithm 3 line 20), and 𝛼𝐶 , 𝛾𝐶 , 𝜖𝐶 from the RL-based

8

COSMOS: RL-Enhanced Locality-Aware Counter Cache Optimization for Secure Memory MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea

Table 1: Reward values and hyperparameters.

Reward Values
𝑅𝐷_𝑚𝑜 = 12, 𝑅𝐷_𝑚𝑖 = −30, 𝑅𝐷_ℎ𝑜 = −20, 𝑅𝐷_ℎ𝑖 = 9
𝑅𝐶_ℎ𝑔 = 13, 𝑅𝐶_ℎ𝑏 = −12, 𝑅𝐶_𝑚𝑔 = −16, 𝑅𝐶_𝑚𝑏 = 20

𝑅𝐶_𝑒𝑔 = −22, 𝑅𝐶_𝑒𝑏 = 26
Hyper-parameters

𝛼𝐷 = 0.09, 𝛾𝐷 = 0.88, 𝜖𝐷 = 0.1
𝛼𝐶 = 0.05, 𝛾𝐶 = 0.35, 𝜖𝐶 = 0.001

4 6 8 10
Memory Accesses (Millions)

60

65

70

75

80

85

Da
ta

 lo
ca

tio
n

pr
ed

ict
io

n
co

rre
ct

ne
ss

 (%
)

BFS MLP

Prediction Correctness CTR Cache Miss Rate

56

58

60

62

64

CT
R

ca
ch

e
m

iss
 ra

te
 (%

)

Figure 8: Data Location Prediction correctness (left y-axis)
and CTR cache miss rate (right y-axis) for BFS (graph-based)
and MLP (non-graph) workloads as memory accesses in-
crease.

CTR locality predictor (Algorithm 1 line 22) significantly influ-
ence COSMOS’s learning efficiency and prediction accuracy. We
define the hyperparameter ranges as 𝛼𝐷 , 𝛾𝐷 , 𝛼𝐶 , 𝛾𝐶 ∈ [10−3, 1] and
𝜖𝐷 , 𝜖𝐶 ∈ [0, 1], as these values are commonly used in the selection
of hyperparameters in RL [30]. To perform fast evaluations, we
implement the RL-based data location predictor and the RL-based
CTR locality predictor in Python, using Pintool [19] to capture the
GraphBIG DFS memory footprint as input. We test 1,000 hyperpa-
rameter combinations and select the optimal combination based on
the maximum LCR-CTR cache hit rate after data location and CTR
locality RL prediction, using fixed reward scores (positive rewards
= 10 and negative rewards = -10).

With the best hyperparameter combination (𝛼𝐷 = 0.09, 𝛾𝐷 =

0.88, 𝜖𝐷 = 0.1, 𝛼𝐶 = 0.05, 𝛾𝐶 = 0.35, 𝜖𝐶 = 0.001), we then tested
1000 reward combinations. Positive rewards (𝑅𝐶_ℎ𝑔 , 𝑅𝐶_𝑚𝑏 , 𝑅𝐶_𝑒𝑏 ,
𝑅𝐷_ℎ𝑖 , 𝑅𝐷_𝑚𝑜) ranged from 0 to 100, while negative rewards (𝑅𝐶_ℎ𝑏 ,
𝑅𝐶_𝑚𝑔 , 𝑅𝐶_𝑒𝑔 , 𝑅𝐷_ℎ𝑜 , 𝑅𝐷_𝑚𝑖) ranged from -100 to -1.

Table 1 presents the final chosen values. COSMOS requires only
one-time tuning for a specific application domain, meaning that
once tuned for irregular memory access workloads (e.g., graph
processing), it generalizes well within that category. However, for
workloadswith differentmemory behaviors (e.g., machine learning),
re-tuning is necessary to optimize performance, as data location and
CTR locality predictions depend on access patterns. Since this work
focuses on irregular memory applications, we tune COSMOS once
using the GraphBIGDFS benchmark, ensuring optimal performance
within this category.

To demonstrate the generalization capability of COSMOS, we
evaluate the adaptability of its RL-based predictors using two dis-
tinct workloads: BFS, a graph-based workload similar to DFS, and
a 3-layer MLP, a nongraph workload. Neither workload was used
during RL hyperparameter tuning. We apply the same 𝛼 , 𝛾 , and 𝜖

2048 4096 6144 8192 10240 12288 14336 16384
CET Entry Number

20

30

40

50

CT
R

Ac
ce

ss
 m

ar
k

 a
s G

oo
d

Lo
ca

lit
y

(%
)

CTR Access mark as Good Locality LCR-CTR cache miss rate

40

50

60

LC
R-

CT
R

ca
ch

e
 m

iss
 ra

te
 (%

)

Figure 9: Comparison of CET entry number vs. percentage of
CTR access marked as good locality by RL in COSMOS (left
y-axis) and LCR-CTR cache miss rate of DFS (right y-axis).

Table 2: Storage overhead of COSMOS.

Component Details Overhead
Data Q-Table 16384 entries; 16 bits/entry 32KB
CTR Q-Table 16384 entries; 16 bits/entry 32KB

CET 8192 entries; 65 bits/entry 66KB(64 bits address, 1 bit prediction)

LCR-CTR cache Extra 9 bits/cache line 17KB(8 bits reward, 1 bit prediction)
Total 147KB

values tuned in DFS and evaluate both workloads over a range of to-
tal memory accesses from 4million to 10 million. Figure 8 shows the
prediction correctness of the data location predictor and the CTR
cache miss rate. The reduction in the CTR cache miss rate reflects
the effectiveness of COSMOS, which integrates cooperation be-
tween the data location predictor and the CTR locality predictor. As
shown in Figure 8, the data location predictor quickly converges on
BFS, reaching 83% prediction correctness, while COSMOS achieves
a CTR cache miss rate of 60% at 10 million accesses. In contrast,
MLP starts with lower prediction correctness because its access pat-
tern was not seen during RL hyperparameter tuning. Nevertheless,
the correctness of the data location predictor continues to increase,
exceeding 70% after 10 million accesses, demonstrating that the RL
agent can gradually adapt through online learning.

4.6 Hardware Overhead of COSMOS
Table 2 summarizes the storage overhead for COSMOS, totaling
147KB, which represents only 1. 84% of an LLC capacity of 8MB.
This overhead is distributed across several components. The Data
Q-Table and the CTR Q-Table each contain 16,384 entries corre-
sponding to 16,384 states for data and CTR blocks, respectively. We
chose this size because 16,384 states are sufficient for 32GB memory
addresses, and the 8 bit Q score is enough for binary predictions
[35]. Both tables store two 8-bit Q-values for binary predictions
(data on-chip/off-chip and good/bad CTR locality). The LCR-CTR
cache requires an additional 9 bits per CTR cache line (1 bit for
prediction and 8 bits for the corresponding Q values).

We conduct a design space exploration to analyze the relation-
ship between CET size and LCR-CTR cache miss rate of DFS. Figure
9 shows CET entry numbers versus CTR good locality percentage
(left y-axis) and LCR-CTR cache miss rate (right y-axis). As CET
size grows, it classifies more CTR accesses as good locality. The
LCR-CTR cache miss rate initially decreases with increasing CET
size but begins to rise when the CET becomes very large. This is
because a large CET will tend to allow the CTR locality predic-
tion scheme to recognize an excess of CTRs as good locality, thus
undermining the CTR cache replacement decisions. When CET

9

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Haoran Geng and Xiaoyang Lu, et al.

Table 3: Simulation settings

Processor Parameters
Core 4 Cores, X86, OoO, 3GHz
L1 Cache 2 cycles, 32KB, 2-Way
L2 Cache 20 Cycles, 1MB, 8-Way
LLC 128 Cycles, 8MB, 16-Way

Memory Parameters
Type DDR4_2400_16x4
Size 32 GB

AES-CTR[13] Parameters
AES Latency 128-bit, 40 Cycles
Authentication latency 40 Cycles
MAC 64 bits each
CTR cache LRU, 512 KB

Morphctr[46] Parameters
CTR combination 1 cycle
Re-encryption Latency extra 64B DRAM request

COSMOS Parameters
LCR-CTR cache 128 KB

entries equal 8,192, it shows a low LCR-CTR cache miss rate. As
CET entries increase to 10,240, the reduction in miss rate becomes
minimal. To balance the size and LCR-CTR cache performance, we
chose the optimal configuration to be a CET with 8,192 entries, each
containing a 64-bit CTR state value and a 1-bit prediction value.

We estimate the power and area of COSMOS components using
SRAM macros generated by a commercial 28 nm memory compiler
under standard industrial conditions (0.9 V, 25°C, 3 GHz). This com-
piler is derived from an industry-standard process design kit (PDK)
and is widely used in commercial chip development, ensuring re-
alistic modeling of SRAM structures. The Data Q-table and CTR
Q-table each occupy an area of 0.057mm2, with a power consump-
tion of 45.29mW. The CET structure requires 0.116mm2 of area
and consumes 92.00mW of power. The LCR-CTR cache contributes
an additional 0.030mm2 of area and 24.06mW of power. In total,
COSMOS introduces 0.260mm2 of area overhead and consumes
206.65mW of additional power.

Regarding performance impact, the Q-table access is estimated
to take 1 cycle (0.024ns) in a 3GHz system. Upon an L1 miss, the
Data Q-table access and address hashing occurs in parallel with
other data accessing functions (L2, LLC access), thus not affecting
the critical path.The CTR Q-table access and CTR address hashing
can be performed in parallel with LCR-CTR cache and CTR DRAM
access, ensuring that their overhead does not impact the critical path
of CTR access. CET access and address hashing can be performed
in parallel with CTR access, so in our evaluation we do not consider
the CET access and hashing latency.

5 EVALUATION METHODOLOGY
We evaluate COSMOS using Gem5[8], a cycle-accurate simulator,
with the graph-based benchmarks discussed in Section 3 under
multi-threading. In addition to graph workloads, we also evalu-
ate the SPEC benchmarks mcf and canneal from SPEC CPU2006
[16] and omnetpp from SPEC CPU2017 [54], which are known for
their low locality and irregular memory access patterns. The SPEC
benchmarks are also executed using 4 threads. We used Gem5’s

Table 4: COSMOS Design Variations

Design Description
COSMOS-DP Data predictor only
COSMOS-CP CTR predictor + LCR-CTR cache
COSMOS Full RL implementation

Syscall Emulation (SE) mode to precisely measure DRAM traffic,
cache hit rates, and MC overhead.

The simulation setup is detailed in Table 3, assumes a 4-core,
4-thread X86 architecture with 32KB L1 cache (per core), 1MB L2
cache (per core), 8MB shared LLC cache, and a 512KB CTR cache
(per core), matching the on-chip storage cost of COSMOS.Wemodel
an AES-CTR-based secure memory system with a 64-bit MAC per
64B cache line, which requires one MAC access per eight data
accesses for authentication [13]. Both MAC authentication and AES
encryption/decryption incur a 40-cycle latency, as in [18, 62, 65, 66],
with the CTR cache and AES operations integrated into the MC.

We use the MorphCtr design [46] as a baseline, with COSMOS
applied to MorphCtr as an enhancement. 1 MorphCtr’s CTR blocks
contain minor CTRs and two major CTRs combined to form the
actual CTR for AES processing. We assume a 1-cycle CTR com-
bination latency in both MorphCtr and COSMOS. CTR integrity
checks require accessing the MT nodes for each CTR DRAM access.
The CTR integrity checking process runs in parallel with the OTP
encryption/decryption, so we do not model this overhead explicitly.

For CTR overflow handling, COSMOS follows MorphCtr’s ap-
proach, triggering re-encryption after 67 accesses to the same CTR
location [46]. Like EMCC [65] and RMCC [66], overflows gener-
ate 64B requests processed in the background by the MC using
dedicated queue slots. This parallel processing allows COSMOS’s
predictors and cache management to operate independently of
re-encryption. Re-encryption events are rare in our target appli-
cations; according to our experiments, among 1 million memory
writes, there are only 1000 CTR overflows.

As discussed in Section 4, the lookup process in the RL predic-
tor is performed off the critical path, ensuring that no additional
overhead is introduced. In our implementation, COSMOS includes
a 128KB LCR-CTR cache. We intentionally choose a relatively small
LCR-CTR cache because COSMOS introduces 147KB of additional
storage in thememory controller compared to other designs [65, 66],
ensuring a fair comparison.

For a complete evaluation of COSMOS we evaluated three varia-
tions of COSMOS (Table 4): COSMOS-DP with only the RL-based
data location predictor, COSMOS-CP with only RL-based CTR lo-
cality predictor and LCR-CTR cache, and full COSMOS combining
both components. This ablation study isolates the impact of each
predictor while demonstrating their synergistic benefits.

6 Evaluation Results
Figure 10 illustrates the performance of MorphCtr (our baseline),
COSMOS-DP, COSMOS-CP, and the full COSMOS implementation,
with all results normalized to a non-protected (NP) memory system.
We observe that COSMOS-DP delivers an 15% average performance

1As a flexible CTR cache optimizer, our solution can work with various designs. In this
article, we choose MorphCtr as the baseline, although COSMOS could also be applied
to other designs, such as MT tree optimizations in Synergy[48] and ITESP[59].

10

COSMOS: RL-Enhanced Locality-Aware Counter Cache Optimization for Secure Memory MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea

BFS DFS TC GC PR CC SP DC mcf
caneal

omnetpp
Gmean0.0

0.2
0.4
0.6
0.8
1.0

No
rm

. p
er

f

MorphCtr
COSMOS-CP

COSMOS-DP
COSMOS

Figure 10: Performance of COSMOS-DP, COSMOS-CP, COS-
MOS and Morphctr, normalized to a non-protected memory
system.

BFS DFS TC GC PR CC SP DC mcf
canneal

omnetpp0
20
40
60
80

100

CT
R

ca
ch

e
M

iss
 R

(%
) MorphCtr COSMOS-CP COSMOS-DP COSMOS

Figure 11: CTR cache miss rate of COSMOS-DP, COSMOS-CP,
COSMOS and MorphCtr across different graph algorithms.

improvement over baseline, while COSMOS-CP achieves an 5%
improvement. The complete COSMOS implementation, which com-
bines both data location and CTR locality predictions, achieves
an average performance gain of 25%. The average residual perfor-
mance overhead compared to the NP system remains approximately
33%. This performance gap is primarily due to the remaining CTR
cache misses, which trigger additional DRAM accesses for CTR
integrity verification, including MT node retrievals.

In the following subsections, we explore how each component
of COSMOS contributes to reducing CTR cache miss rates and
improving overall system performance.

6.1 Performance Analysis
6.1.1 CTRCache Performance. COSMOS’s performance gains stem
primarily from its ability to reduce CTR cache miss rates—a key
contributor to secure memory overhead. Figure 11 presents the
CTR cache miss rates in different variants of COSMOS. COSMOS-
CP shows limited improvement, as it accesses CTRs only after
LLC misses, causing the CTR cache to behave like an "L4" cache ,
where most high-locality data have already been filtered out. As
a result, the CTR cache captures few reusable counters, limiting
its effectiveness. In contrast, COSMOS-DP and the full COSMOS
design access CTRs immediately after L1 misses, allowing high-
locality CTRs to be inserted into the cache earlier. This early access
significantly increases cache hit rates and overall performance.

6.1.2 Effectiveness of RL. We evaluate the effectiveness of the two
RL predictors used in COSMOS. To assess the impact of the RL-
based CTR locality predictor, we examine the percentage of CTR
accesses classified as having good locality, as shown in Figure 13.
For CTR accesses triggered after LLC misses, only about 5% are
identified as having good locality. This low percentage limits the
effectiveness of the LCR-CTR cache, which is designed to retain
CTRs marked as high locality while evicting those deemed less
useful.

For the RL-based data location predictor, Figure 12 shows that
the prediction accuracy averages around 85% across all evaluated

BFS DFS TC GC PR CC SP DC mcf caneal onmetpp0

25

50

75

100

Ac
ce

ss
es

 (%
)

11.29% 5.79%
17.82% 12.41% 11.19% 16.73% 5.69% 15.67% 4.33% 5.30% 5.25%

9.66% 12.72%
12.37% 13.43% 13.16% 7.73%

7.71%
11.24%

8.83% 10.18% 10.05%

70.83% 72.90% 60.67% 65.67% 65.88% 65.80% 78.02%
64.47%

66.94%
84.32% 84.67%

8.23% 8.61% 9.57% 9.49% 9.16% 9.70% 8.58% 8.61% 19.91%
0.19% 0.04%

On-chip correct On-chip incorrect Off-chip correct Off-chip incorrect

Figure 12: Data access prediction distribution and accuracy in
COSMOS’s RL-based data location prediction across different
algorithms. Green text indicates correct prediction portions.

BFS DFS TC GC PR CC SP DC mcf
caneal

onmetpp0
5

10
15
20

%
 C

TR
 A

cc
es

s
 h

as
 G

oo
d

Lo
ca

lit
y

COSMOS-CP COSMOS

Figure 13: Comparison of percentage of CTR accesses con-
sidered as good locality by RL in COSMOS and COSMOS-CP
across different algorithms.

benchmarks. This includes both correctly predicted on-chip and off-
chip accesses. This level of precision is particularly impressive given
the irregular memory access patterns in our target applications,
where traditional pattern-based predictors typically achieve less
than 60% precision. The RL predictor adapts quickly to changing
access patterns, reaching stable prediction accuracy within the first
10 total millionmemory accesses. Accurate off-chip predictions help
bypass unnecessary L2 and LLC accesses, thus reducing average
memory latency.

Additionally, about 12% of off-chip predictions are misclassi-
fied—that is, they actually have good locality and should have been
kept on-chip. However, these misclassified accesses are still directed
to the CTR cache. This unintentionally benefits the system by al-
lowing more high-locality CTRs to enter the cache, improving its
utilization and effectiveness. Our analysis suggests that approxi-
mately 30% of the overall improvement in the CTR cache hit rate
comes from this beneficial side effect of misclassification.

In the full COSMOS design, the combination of the two RL pre-
dictors leads to better CTR cache utilization. As shown in Figure 13,
approximately 20% of the CTR accesses are identified to have good
locality. Compared to COSMOS-DP, the full COSMOS design re-
duces the CTR cache miss rate by 14 percentage points (Figure 11).
This improvement demonstrates the synergistic value of combin-
ing data location prediction with accurate locality prediction: the
former enables early access to the CTR, while the latter ensures
efficient utilization of the CTR cache space by identifying and pri-
oritizing the CTRs that will be reused.

6.1.3 Secure Memory Access Time. The major benefit of using COS-
MOS in secure memory lies in its ability to reduce the overall
memory traffic. To quantify this impact, we define Secure Memory
Access Time (SMAT), which reflects the average latency per access
in secure memory, combining traditional memory hierarchy access
latencies with additional overhead specific to secure memory.

SMAT = 𝐿1+𝑀𝑅𝐿1 (𝐿2+𝑀𝑅𝐿2 (𝐿𝐿𝐶+𝑀𝑅𝐿𝐿𝐶 (CTR+𝐷𝑅𝐴𝑀))) (1)

CTR = CTRhit +𝑀𝑅CTR (CTRDRAM + CTRverify) (2)
11

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Haoran Geng and Xiaoyang Lu, et al.

DFS BFS TC GC PR CC SP DC MCF
canneal

Omnetpp0

5

10

15

20

SM
AT

 (c
yc

le
s)

MorphCtr COSMOS-CP COSMOS-DP COSMOS

Figure 14: Secure Memory Access Time (SMAT) across dif-
ferent secure memory designs: MorphCtr, COSMOS-CP,
COSMOS-DP, and COSMOS.

BFS DFS TC GC CC SP DC Gmean0.0
0.2
0.4
0.6
0.8
1.0

No
rm

. P
er

f

MorphCtr (4-core)
COSMOS (4-core)

MorphCtr (8-core)
COSMOS (8-core)

Figure 15: Performance comparison of COSMOS and Mor-
phCtr, normalized to a non-protected memory system, in
multi-core systems across various graph-based workloads.

Here,𝑀𝑅 represents the miss rate at each cache level. The CTR
term captures the secure memory overhead, where a CTR cache
miss results in both CTR DRAM access and CTR verification.

Figure 14 presents the SMAT across all evaluated applications for
MorphCtr, COSMOS-CP, COSMOS-DP, and the full COSMOS de-
sign. COSMOS achieves the lowest SMAT among all configurations,
with improvements from two key mechanisms. First, it reduces the
CTR cache miss rate, thus reducing expensive CTR DRAM accesses
and MT verifications. Second, thanks to the RL-based data location
predictor, approximately 70% of the memory accesses bypass the
L2 and LLC caches and go directly from L1 to the CTR cache. This
reduces unnecessary cache lookups and reduces the overall access
latency.

Finally, to evaluate the scalability of COSMOS, we extend our
analysis beyond the default 4-core configuration by incorporating
an 8-core system with a 16MB shared LLC. The evaluation spans
seven representative graph-based workloads, including BFS, DFS,
TC, GC, CC, SP, and DC. As shown in Figure 15, COSMOS consis-
tently outperforms MorphCtr in both configurations, achieving a
26% performance gain in the 8-core system (compared to 25% in the
4-core setup), demonstrating that COSMOS maintains consistent
performance benefits as the system scales.

6.2 Comparison with State-of-the-Art Designs
We compare COSMOS with EMCC [65], a state-of-the-art design
that integrates CTR caching and AES/MAC logic into the L2 cache
controller. Its key idea is to overlap CTR decryption and data ac-
cess by embedding CTR management within the L2 pipeline. We
implement an EMCC-like system in Gem5 that places the CTR
cache at the L2 cache level. In this implementation, data access of
L2, LLC, and DRAM occurs in parallel with CTR access in L2. To
focus on evaluating the performance achieved by the core design of
EMCC, we follow the original flow [65] while excluding additional
overheads, such as the extra latency from AES computation in L2,
L2 CTR cache access latency, and NoC latency between L2 and

BFS DFS TC GC PR CC SP DC mcf
caneal

onmetpp
Gmean0.0

0.2
0.4
0.6
0.8
1.0

No
rm

. p
er

f

COSMOS EMCC

Figure 16: Performance of COSMOS and EMCC normalized
to a non-protected memory system.

VGG16 Alexnet Resnet Transformer BERT DLRM Gmean0.0
0.2
0.4
0.6
0.8
1.0
1.2

No
rm

. p
er

f

COSMOS MorphCtr

Figure 17: Performance comparison of COSMOS and Mor-
phCtr, normalized to a non-protected memory system, in a
4-core configuration running machine learning workloads.

LLC. Figure 16 shows that EMCC achieves an average 12% per-
formance improvement over MorphCtr. COSMOS provides a 10%
performance gain over our ideal EMCC implementation. This im-
provement stems from the dual RL-based specialized predictors in
COSMOS, which collaboratively reduce CTR cache misses and mit-
igate memory access latency without modifying cache controllers.

RMCC [66], another recently proposed secure memory optimiza-
tion, retains frequently accessed counters near the memory con-
troller to reduce CTR-related traffic. It reports performance gains
comparable to EMCC over MorphCtr. Since COSMOS achieves
an additional 10% improvement over the ideal implementation of
EMCC, similar benefits are expected over RMCC. COSMOS pro-
vides stronger performance potential than RMCC, as it enables
earlier CTR access through data location prediction, while RMCC
applies remapping only after LLC misses. Furthermore, utilizing
RL provides greater adaptability for COSMOS compared to the
memoization-aware scheme employed by RMCC.

6.3 Workload on Regular Memory Access
Pattern

Finally, we evaluate COSMOS on workloads with regular memory
access patterns to assess whether it negatively impacts performance
in such scenarios. We parallelize inference across four threads for
six representative models: AlexNet [31], ResNet [15], VGG [53],
BERT [10], Transformer [40], and DLRM [40].

For visionmodels (AlexNet, ResNet, VGG), we process 224×224×3
images, parallelizing convolutional output channels and fully con-
nected neurons. Language models (BERT, Transformer) operate
on sequences of length 128 with 768-dimensional embeddings,
parallelizing self-attention and feed-forward layers. The recom-
mendation model DLRM processes 13 dense features and multiple
categorical embeddings, parallelizing embedding lookups and fully
connected operations.

We use the same COSMOS hyperparameters tuned for irregu-
lar graph workloads, without re-tuning for these regular access
patterns. This setup allows us to evaluate the generalizability of
COSMOS rather than optimize for peak performance.

As shown in Figure 17, COSMOS yields only modest gains (∼3%)
over MorphCtr. This is due to three key factors: (1) suboptimal
hyperparameters for these workloads reduce prediction accuracy;

12

COSMOS: RL-Enhanced Locality-Aware Counter Cache Optimization for Secure Memory MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea

(2) regular memory access patterns already achieve high cache hit
rates, diminishing the benefit of CTR cache optimizations; and (3)
re-encryption becomes a major bottleneck, since the same CTRs
are repeatedly accessed, over 50% of accesses trigger re-encryption.
Because COSMOS focuses on CTR cache efficiency rather than
re-encryption handling, its impact is limited here.

However, this experiment confirms that COSMOS does not harm
performance in regular workloads, demonstrating robustness and
general applicability without introducing regressions.

7 Related Work
Previous memory encryption research explored countermode en-
cryption and integrity trees [13, 48, 55, 59], with challenges in off-
chip CTR storage. MGX [18] and SoftVN [62] introduced novel CTR
generation methods. Split CTR [68] and Morphctr [46] improved
storage efficiency through shared counters and adaptive represen-
tations. Although EMCC [65], RMCC [66], and Counter-light [64]
built on MorphCtr, they fall short of COSMOS’s performance.

ML-based schemes are designed to optimize cache performance
and reduce cache errors using advanced prediction techniques.
Hermes [6] employs a perceptron-based predictor for load miss
predictions. TCP [23] uses similar predictors for off-chip access and
prefetch filtering. Pythia [7] leverages online RL for data access-
aware prefetching. CHROME [35] integrates cache replacement,
bypass, and prefetching via RL online. However, none of these
designs addresses the unique challenges of secure memory systems.

8 Conclusion
We introduced COSMOS, a novel approach to optimize secure mem-
ory systems that leverages RL for data location and CTR locality
prediction. By enabling earlier CTR access in the cache hierarchy
and better using CTR locality, COSMOS reduces CTR cache miss
rates and overall memory access latency. With minimal hardware
modifications, COSMOS achieves a 25% performance gain over Mor-
phCtr, outperforming EMCC by 10% in applications with irregular
memory access.

Acknowledgments
The authors sincerely thank the anonymous reviewers for their
valuable comments and feedback. We are also grateful to mem-
bers of the Hardware-Software Codesign Lab at the University of
Notre Dame, the Gnosis Research Center at Illinois Insitute of Tech-
nology and the ICSLAB at Wuhan University for their insightful
suggestions and experimental support throughout this work.

This research was supported in part by SUPREME, one of the
six centers in JUMP, a Semiconductor Research Corporation (SRC)
program sponsored by DARPA. Additional support was provided by
the National Science Foundation (NSF) under grants CNS-2152497
and CNS-2310422. Dr. Dazhao Cheng was supported by the Na-
tional Natural Science Foundation of China (NSFC) under Grant
No. 62341410. Dr. Yuezhi Che was supported by the NSFC under
Grant No. 62402346.

References
[1] Advanced Micro Devices, Inc. 2020. AMD Secure Encrypted Virtualiza-

tion API Version 0.24. Technical Report Publication #55766. AMD Corpora-
tion. https://www.amd.com/content/dam/amd/en/documents/epyc-technical-

docs/programmer-references/55766_SEV-KM_API_Specification.pdf
[2] Advanced Micro Devices, Inc. 2020. AMD SEV-SNP: Strengthening VM Iso-

lation with Integrity Protection and More. Technical Report. AMD Corpora-
tion. https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-
vm-isolation-with-integrity-protection-and-more.pdf

[3] Jeongseob Ahn, Seongwook Jin, and Jaehyuk Huh. 2012. Revisiting hardware-
assisted page walks for virtualized systems. ACM SIGARCHComputer Architecture
News 40, 3 (2012), 476–487.

[4] AMD. 2023. AMD Memory Encryption White Paper. https://www.amd.com/
system/files/TechDocs/memory-encryption-white-paper.pdf

[5] Thomas W Barr, Alan L Cox, and Scott Rixner. 2010. Translation caching: skip,
don’t walk (the page table). ACM SIGARCH Computer Architecture News 38, 3
(2010), 48–59.

[6] Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran, David Novo,
Ataberk Olgun, Mohammad Sadrosadat, and Onur Mutlu. 2022. Hermes: Accel-
erating long-latency load requests via perceptron-based off-chip load prediction.
In 2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 1–18.

[7] Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreenivas
Subramoney, and Onur Mutlu. 2021. Pythia: A customizable hardware prefetch-
ing framework using online reinforcement learning. In MICRO-54: 54th Annual
IEEE/ACM International Symposium on Microarchitecture. 1121–1137.

[8] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh
Sardashti, et al. 2011. The gem5 simulator. ACM SIGARCH computer architecture
news 39, 2 (2011), 1–7.

[9] Zehan Cui, Aamer Jaleel, Simon C. Steely, and Joel S. Emer. 2011. SHiP: Signature-
based hit predictor for high performance caching. In Proceedings of the 44th annual
IEEE/ACM international symposium on microarchitecture (MICRO). IEEE/ACM,
430–441.

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[11] John WC Fu and Janak H Patel. 1991. Data prefetching in multiprocessor vector
cache memories. ACM SIGARCH Computer Architecture News 19, 3 (1991), 54–63.

[12] John WC Fu, Janak H Patel, and Bob L Janssens. 1992. Stride directed prefetching
in scalar processors. ACM SIGMICRO Newsletter 23, 1-2 (1992), 102–110.

[13] Shay Gueron. 2016. Memory encryption for general-purpose processors. IEEE
Security & Privacy 14, 6 (2016), 54–62.

[14] Milad Hashemi, Kevin Swersky, Jamie Smith, Grant Ayers, Heiner Litz, Jichuan
Chang, Christos Kozyrakis, and Parthasarathy Ranganathan. 2018. Learning
memory access patterns. In International Conference on Machine Learning. PMLR,
1919–1928.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[16] John L Henning. 2006. SPEC CPU2006 benchmark descriptions. ACM SIGARCH
Computer Architecture News 34, 4 (2006), 1–17.

[17] Michael Henson and Stephen Taylor. 2014. Memory encryption: A survey of
existing techniques. ACM Computing Surveys (CSUR) 46, 4 (2014), 1–26.

[18] Weizhe Hua, Muhammad Umar, Zhiru Zhang, and G Edward Suh. 2022. MGX:
Near-zero overhead memory protection for data-intensive accelerators. In Pro-
ceedings of the 49th Annual International Symposium on Computer Architecture.
726–741.

[19] Intel Corporation. 2020. Pin - A Dynamic Binary Instrumentation
Tool. https://software.intel.com/en-us/articles/pin-a-dynamic-binary-
instrumentation-tool. Accessed: 2024-06-17.

[20] Engin Ipek, Onur Mutlu, José F Martínez, and Rich Caruana. 2008. Self-optimizing
memory controllers: A reinforcement learning approach. ACM SIGARCH Com-
puter Architecture News 36, 3 (2008), 39–50.

[21] Aamer Jaleel, Kevin B. Theobald, Simon C. Steely Jr., and Joel S. Emer. 2010. High
performance cache replacement using re-reference interval prediction (RRIP). In
Proceedings of the 37th annual international symposium on Computer architecture
(ISCA). ACM, 60–71.

[22] Majid Jalili and Mattan Erez. 2022. Reducing load latency with cache level
prediction. In 2022 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). IEEE, 648–661.

[23] Alexandre Valentin Jamet, Georgios Vavouliotis, Daniel A Jiménez, Lluc Alvarez,
and Marc Casas. 2024. A Two Level Neural Approach Combining Off-Chip
Prediction with Adaptive Prefetch Filtering. In 2024 IEEE International Symposium
on High-Performance Computer Architecture (HPCA). IEEE, 528–542.

[24] Beakcheol Jang, Myeonghwi Kim, Gaspard Harerimana, and Jong Wook Kim.
2019. Q-learning algorithms: A comprehensive classification and applications.
IEEE access 7 (2019), 133653–133667.

[25] Yang Ji, Sangho Lee, Evan Downing, Weiren Wang, Mattia Fazzini, Taesoo Kim,
Alessandro Orso, and Wenke Lee. 2017. Rain: Refinable attack investigation with
on-demand inter-process information flow tracking. In Proceedings of the 2017
ACM SIGSAC conference on computer and communications security. 377–390.

13

https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/programmer-references/55766_SEV-KM_API_Specification.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/programmer-references/55766_SEV-KM_API_Specification.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/memory-encryption-white-paper.pdf
https://www.amd.com/system/files/TechDocs/memory-encryption-white-paper.pdf
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Haoran Geng and Xiaoyang Lu, et al.

[26] Daniel A Jiménez and Elvira Teran. 2017. Multiperspective reuse prediction. In
Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchi-
tecture. 436–448.

[27] Daniel A Jiménez and Elvira Teran. 2017. Multiperspective reuse prediction. In
Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchi-
tecture. 436–448.

[28] Gokul B Kandiraju and Anand Sivasubramaniam. 2002. Going the distance
for TLB prefetching: An application-driven study. ACM SIGARCH Computer
Architecture News 30, 2 (2002), 195–206.

[29] Samira Manabi Khan, Yingying Tian, and Daniel A Jimenez. 2010. Sampling dead
block prediction for last-level caches. In 2010 43rd Annual IEEE/ACM International
Symposium on Microarchitecture. IEEE, 175–186.

[30] Mariam Kiran and Melis Ozyildirim. 2022. Hyperparameter tuning for deep
reinforcement learning applications. arXiv preprint arXiv:2201.11182 (2022).

[31] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifi-
cation with deep convolutional neural networks. Advances in neural information
processing systems 25 (2012).

[32] Mengyuan Li, Yinqian Zhang, Huibo Wang, Kang Li, and Yueqiang Cheng. 2021.
{CIPHERLEAKS}: Breaking Constant-time Cryptography on {AMD}{SEV}
via the Ciphertext Side Channel. In 30th USENIX Security Symposium (USENIX
Security 21). 717–732.

[33] Evan Liu, Milad Hashemi, Kevin Swersky, Parthasarathy Ranganathan, and Jun-
whan Ahn. 2020. An imitation learning approach for cache replacement. In
International Conference on Machine Learning. PMLR, 6237–6247.

[34] Evan Liu, Milad Hashemi, Kevin Swersky, Parthasarathy Ranganathan, and Jun-
whan Ahn. 2020. An imitation learning approach for cache replacement. In
International Conference on Machine Learning. PMLR, 6237–6247.

[35] Xiaoyang Lu, Hamed Najafi, Jason Liu, and Xian-He Sun. 2024. CHROME:
Concurrency-aware holistic cache management framework with online rein-
forcement learning. In 2024 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). IEEE, 1154–1167.

[36] Daniel Lustig, Abhishek Bhattacharjee, and Margaret Martonosi. 2013. TLB
improvements for chip multiprocessors: Inter-core cooperative prefetchers and
shared last-level TLBs. ACM Transactions on Architecture and Code Optimization
(TACO) 10, 1 (2013), 1–38.

[37] Luther Martin. 2010. XTS: Amode of AES for encrypting hard disks. IEEE Security
& Privacy 8, 3 (2010), 68–69.

[38] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
Nature 518, 7540 (2015), 529–533.

[39] Lifeng Nai, Yinglong Xia, Ilie G Tanase, Hyesoon Kim, and Ching-Yung Lin. 2015.
GraphBIG: understanding graph computing in the context of industrial solutions.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. 1–12.

[40] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang,
Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-
Jean Wu, Alisson G Azzolini, et al. 2019. Deep learning recommendation model
for personalization and recommendation systems. arXiv preprint arXiv:1906.00091
(2019).

[41] Juan Navarro, Sitararn Iyer, Peter Druschel, and Alan Cox. 2002. Practical,
transparent operating system support for superpages. ACM SIGOPS Operating
Systems Review 36, SI (2002), 89–104.

[42] Agustín Navarro-Torres, Biswabandan Panda, Jesús Alastruey-Benedé, Pablo
Ibáñez, Víctor Viñals-Yúfera, and Alberto Ros. 2022. Berti: an accurate local-delta
data prefetcher. In 2022 55th IEEE/ACM International Symposium on Microarchi-
tecture (MICRO). IEEE, 975–991.

[43] Brian Rogers, Siddhartha Chhabra, Milos Prvulovic, and Yan Solihin. 2007. Using
address independent seed encryption and bonsai merkle trees to make secure
processors os-and performance-friendly. In 40th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO 2007). IEEE, 183–196.

[44] Benedek Rozemberczki, Carl Allen, and Rik Sarkar. 2019. Multi-scale Attributed
Node Embedding. arXiv:1909.13021 [cs.LG]

[45] Gavin A Rummery and Mahesan Niranjan. 1994. On-line Q-learning using con-
nectionist systems. Vol. 37. University of Cambridge, Department of Engineering
Cambridge, UK.

[46] Gururaj Saileshwar, Prashant J Nair, Prakash Ramrakhyani, Wendy Elsasser,
Jose A Joao, and Moinuddin K Qureshi. 2018. Morphable counters: Enabling
compact integrity trees for low-overhead secure memories. In 2018 51st Annual
IEEE/ACM International Symposium onMicroarchitecture (MICRO). IEEE, 416–427.

[47] Gururaj Saileshwar, Prashant J Nair, Prakash Ramrakhyani, Wendy Elsasser,
and Moinuddin K Qureshi. 2018. Synergy: Rethinking secure-memory design
for error-correcting memories. In 2018 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 454–465.

[48] Gururaj Saileshwar, Prashant J Nair, Prakash Ramrakhyani, Wendy Elsasser,
and Moinuddin K Qureshi. 2018. Synergy: Rethinking secure-memory design
for error-correcting memories. In 2018 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 454–465.

[49] Subhash Sethumurugan, Jieming Yin, and John Sartori. 2021. Designing a cost-
effective cache replacement policy using machine learning. In 2021 IEEE Inter-
national Symposium on High-Performance Computer Architecture (HPCA). IEEE,
291–303.

[50] Ishan Shah, Akanksha Jain, and Calvin Lin. 2022. Effective mimicry of belady’s
min policy. In 2022 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). IEEE, 558–572.

[51] Zhan Shi, Xiangru Huang, Akanksha Jain, and Calvin Lin. 2019. Applying deep
learning to the cache replacement problem. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture. 413–425.

[52] Zhan Shi, Akanksha Jain, Kevin Swersky, Milad Hashemi, Parthasarathy Ran-
ganathan, and Calvin Lin. 2019. A neural hierarchical sequence model for irregu-
lar data prefetching. In ML For Systems Workshop, NeurIPS.

[53] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[54] Standard Performance Evaluation Corporation. 2017. SPEC CPU2017 Benchmark
Suite. https://www.spec.org/cpu2017/

[55] G Edward Suh, Dwaine Clarke, Blaise Gasend, Marten Van Dijk, and Srinivas
Devadas. 2003. Efficient memory integrity verification and encryption for secure
processors. In Proceedings. 36th Annual IEEE/ACM International Symposium on
Microarchitecture, 2003. MICRO-36. IEEE, 339–350.

[56] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[57] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[58] Michael Szydlo. 2004. Merkle tree traversal in log space and time. In Advances
in Cryptology-EUROCRYPT 2004: International Conference on the Theory and
Applications of Cryptographic Techniques, Interlaken, Switzerland, May 2-6, 2004.
Proceedings 23. Springer, 541–554.

[59] Meysam Taassori, Rajeev Balasubramonian, Siddhartha Chhabra, Alaa R
Alameldeen, Manjula Peddireddy, Rajat Agarwal, and Ryan Stutsman. 2020. Com-
pact leakage-free support for integrity and reliability. In 2020 ACM/IEEE 47th
Annual International Symposium on Computer Architecture (ISCA). IEEE, 735–748.

[60] Elvira Teran, Zhe Wang, and Daniel A Jiménez. 2016. Perceptron learning for
reuse prediction. In 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 1–12.

[61] Elvira Teran, Zhe Wang, and Daniel A Jiménez. 2016. Perceptron learning for
reuse prediction. In 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 1–12.

[62] Muhammad Umar, Weizhe Hua, Zhiru Zhang, and G Edward Suh. 2022. Softvn:
Efficient memory protection via software-provided version numbers. In Pro-
ceedings of the 49th Annual International Symposium on Computer Architecture.
160–172.

[63] Sebastiano Vigna. 2017. Further scramblings of Marsaglia’s xorshift generators.
J. Comput. Appl. Math. 315 (2017), 175–181.

[64] Xin Wang, Jagadish Kotra, Alex Jones, Wenjie Xiong, and Xun Jian. [n. d.].
Counter-light Memory Encryption. ([n. d.]).

[65] Xin Wang, Jagadish B Kotra, and Xun Jian. 2022. Eager memory cryptography
in caches. In 2022 55th IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 693–709.

[66] Xin Wang, Daulet Talapkaliyev, Matthew Hicks, and Xun Jian. 2022. Self-
reinforcing memoization for cryptography calculations in secure memory sys-
tems. In 2022 55th IEEE/ACM International Symposium on Microarchitecture (MI-
CRO). IEEE, 678–692.

[67] Jan Wichelmann, Anna Pätschke, Luca Wilke, and Thomas Eisenbarth. 2023.
Cipherfix: Mitigating Ciphertext {Side-Channel} Attacks in Software. In 32nd
USENIX Security Symposium (USENIX Security 23). 6789–6806.

[68] Chenyu Yan, Daniel Englender, Milos Prvulovic, Brian Rogers, and Yan Solihin.
2006. Improving cost, performance, and security of memory encryption and
authentication. ACM SIGARCH Computer Architecture News 34, 2 (2006), 179–190.

[69] Pengmiao Zhang, Neelesh Gupta, Rajgopal Kannan, and Viktor K Prasanna. 2024.
Attention, Distillation, and Tabularization: Towards Practical Neural Network-
Based Prefetching. In 2024 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). IEEE, 876–888.

[70] Pengmiao Zhang, Rajgopal Kannan, Ajitesh Srivastava, Anant V Nori, and Vik-
tor K Prasanna. 2022. Resemble: reinforced ensemble framework for data prefetch-
ing. In SC22: International Conference for High Performance Computing, Network-
ing, Storage and Analysis. IEEE, 1–14.

[71] Yang Zhao, Xing Hu, Shuangchen Li, Jing Ye, Lei Deng, Yu Ji, Jianyu Xu, Dong
Wu, and Yuan Xie. 2019. Memory trojan attack on neural network accelerators.
In 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 1415–1420.

[72] Wei Zheng, Ying Wu, Xiaoxue Wu, Chen Feng, Yulei Sui, Xiapu Luo, and Yajin
Zhou. 2021. A survey of Intel SGX and its applications. Frontiers of Computer
Science 15 (2021), 1–15.

14

https://arxiv.org/abs/1909.13021
https://www.spec.org/cpu2017/

	Abstract
	1 Introduction
	2 Background
	2.1 AES-CTR Based Secure Memory
	2.2 Split CTR
	2.3 Reinforcement Learning

	3 Observations and Motivations
	3.1 Characterizing the CTR Cache Problem
	3.2 CTR Cache Hit is All You Need
	3.3 Cache Optimization in CTR Cache
	3.4 Leveraging Reinforcement Learning

	4 COSMOS Design
	4.1 RL Formulations for COSMOS
	4.2 RL-based CTR Locality Predictor
	4.3 LCR-CTR Cache
	4.4 RL-based Data Location Predictor
	4.5 Hyperparameter and Reward Value Selection
	4.6 Hardware Overhead of COSMOS

	5 EVALUATION METHODOLOGY
	6 Evaluation Results
	6.1 Performance Analysis
	6.2 Comparison with State-of-the-Art Designs
	6.3 Workload on Regular Memory Access Pattern

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

