
CoPIM: A Concurrency-aware PIM Workload
Offloading Architecture for Graph Applications

Liang Yan1, 2, Mingzhe Zhang1, 2, Rujia Wang3, Xiaoming Chen1, 2, Xingqi Zou1, 2, Xiaoyang Lu3

Yinhe Han1, 2, Xian-He Sun3
1Center for Intelligent Computing Systems, Institute of Computing Technology,Chinese Academy of Sciences

2University of Chinese Academy of Sciences, Beijing
3Department of Compute Science, Illinois Institute of Technology, Chicago, IL

Email: {chenxiaoming, yinhes}@ict.ac.cn, sun@iit.edu

Abstract—Processing-in-Memory (PIM) is considered a
promising solution to improve the performance of graph-
computing applications by minimizing the data movement be-
tween the host and memory. Which workload to offload and how
to offload it to PIM logic determine whether the PIM architecture
is well utilized. Offloading too much or too little workload
from the host processor to the PIM side could hurt overall
performance. On the other hand, the offloading granularity
needs to be representative without losing generality. In this
paper, we present CoPIM, a novel PIM workload offloading
architecture that can dynamically determine which portion of the
graph workload can benefit more from PIM-side computation.
CoPIM focuses on the loop code blocks of graph applications
and evaluates the necessity of offloading based on a concurrent
memory access model. We also provide detailed architectural
designs to support the offloading. In this way, CoPIM reduces
the size of offloading instructions and also improves the overall
performance with less energy consumption. The experimental
results show that compared with other state-of-the-art PIM
workload offloading frameworks, CoPIM achieves a speedup
by the geometric mean of 19.5% and 11.4% than PEI and
GraphPIM, respectively. On the other hand, CoPIM also reduces
the un-core energy consumption by 6.8% and 6.5% on average
over PEI and GraphPIM, respectively.

Index Terms—Processing-in-memory, hybrid memory cube,
workload partitioning

I. INTRODUCTION

With the rapid development of information technology

such as big data, cloud computing, and artificial intelligence,

information processing has shifted from computing-intensive

to data-intensive. The conventional von Neumann architecture

faces the memory wall bottleneck [1]. The challenges mainly

come from two aspects: first, the frequent data transmission

between computing units and memory units has become the

bottleneck of power dissipation and system performance [2];

second, with the increase of data size [3], the effectiveness

This work was supported by National Key Research and Develop Program
of China (2018YFA0701500), by Key Research Program of Frontier Sciences,
Chinese Academy of Sciences (ZDBS-LY-JSC012), by Strategic Priority
Research Program of Chinese Academy of Sciences (XDB44000000), by
National Natural Science Foundation of China (61804155, 61834006), by the
Youth Innovation Promotion Association CAS, and by Beijing Academy of
Artificial Intelligence (BAAI), and by ZheJiang Lab (2019KC0AB01).

of the conventional memory hierarchy based architectures

utilizing data locality decreases or even becomes invalid.

In terms of technology, with the development of the 3D-

stacking and Through Silicon Vias techniques, a new solution

for the memory wall problem was proposed: the Processing-

in-Memory (PIM) architecture. PIM integrates computing re-

sources into the memory to make full use of the near-data

advantage [4], [5]. PIM reduces unnecessary data movement

between the on-chip caches and the memory, thus significantly

improving memory access’s energy efficiency. In terms of

application, modern big data applications run on massive data

sets, and the data movement is significant. Among them,

graph-computing applications are particularly popular, because

graph naturally captures the relationship between data items,

and allows data analysts to obtain valuable insights from

patterns in data for wide application [6]. However, graph-

computing brings great challenges to memory system due

to the random memory access. As a result, because of the

advances in both technology and application, the research

community and industry become increasingly interested in

applying PIM to graph-computing applications.

However, how to divide the graph-computing program rea-

sonably and select the proper instructions for PIM has become

a significant challenge. An unreasonable workload offloading

will lead to frequent data movements between CPU and mem-

ory, resulting in performance and energy overhead. When the

in-memory computing units are configured as general-purpose

cores, the computation partitioning will have a greater impact.

Therefore, it is necessary to establish an accurate and effective

workload offloading model to improve the performance and

energy efficiency of the PIM system.

Most of the partitioning strategies aim to move highly

data-intensive portions of the application to PIM logic units.

However, some studies illustrate that certain codes can still

benefit from the host CPU due to the performance gap

between the CPU and the PIM logic [7]. Therefore, an efficient

workload offloading architecture should take into account the

performance differences between the CPU and PIM core to

maximize the efficiency of the overall system.

Intuitively, an instruction that is suitable for PIM execution

should involve a cache miss. This idea has been adopted by [4].978-1-6654-3922-0/21/$31.00 ©2021 IEEE

20
21

 IE
EE

/A
CM

 In
te

rn
at

io
na

l S
ym

po
siu

m
 o

n
Lo

w
 P

ow
er

 E
le

ct
ro

ni
cs

 a
nd

 D
es

ig
n

(IS
LP

ED
) |

 9
78

-1
-6

65
4-

39
22

-0
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
IS

LP
ED

52
81

1.
20

21
.9

50
24

83

Poster101.pdf 1 7/31/2021 8:09:43 PM

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on October 01,2021 at 07:27:41 UTC from IEEE Xplore. Restrictions apply.

However, a modern memory system is supported not only by

memory hierarchy but also by various data access concur-

rency. Techniques that exploit memory concurrency or data

parallelism, such as out-of-order execution and non-blocking

cache, have been applied in modern systems to effectively

overlap computation and memory access. Concurrent memory

access enables multiple memory requests to overlap to reduce

the memory stall time. Cache misses can be divided into

two different types considering memory concurrency: mixed

misses (hit/miss overlapping) and pure misses [8] (no hit/miss

overlapping). A mixed miss can reduce the performance loss

because the processor can still perform execution from an

overlapped cache hit. On the other hand, a pure miss with

no hit-miss overlapping could hurt the overall performance

more. As a result, a pure miss will indeed induce performance

loss in the modern memory system with the consideration of

concurrency [8], [9].

As discussed, most of the existing PIM workload partition-

ing strategies did not fully consider the memory access con-

currency. There remains space exploration to find an accurate

criterion to define which part of the code will cause the CPU

to stall and so that we should move them into PIM. This paper

aims to find an approach to wisely partition the code between

CPUs and PIM processors, which can transfer codes that

indeed need to be executed in memory with the consideration

of memory concurrency using last level cache (LLC) pure miss

cycle rate. We make the following contributions in this paper.

• We utilize the concept of pure miss in the cache hierarchy,
which considers both access concurrency and locality. We

identify that using pure miss and its related metrics can help

find critical parts of the workload that should be executed on

the PIM for better performance.

• We then propose CoPIM, a concurrency-aware PIM work-
load partition and offload architecture that integrates memory

access concurrency measurement and the workload source

code sampling. We present the detailed workflow and archi-

tectural extensions of CoPIM.

• We compare CoPIM with other state-of-the-art PIM code

partition frameworks and show the improvements with detailed

experimental results. We show that we can achieve higher

performance with less workload offloading and energy con-

sumption.

II. BACKGROUND AND MOTIVATION

A. Processing-in-Memory

To mitigate the memory wall bottleneck, the new computing

paradigm, PIM, proposes performing the computation directly

inside or near the memory modules. Researchers have pro-

posed various PIM designs and showed significant perfor-

mance improvement for applications like data analytic [10],

graph processing [6], [11], DNN training [12], etc.

In general, the PIM cores are much weaker in perfor-

mance than CPU, as they lack large caches and sophisticated

instruction-level parallelism (ILP) techniques. As a result, the

workload to be executed by PIM needs to be appropriately

chosen. Offloading too much or an unsuitable workload to the

PIM side could hurt the overall system performance.

As for the partitioning approach, there are already some

typical partitioning methods. For example, PEI [4] considers

the locality of the program and uses LLC miss as the standard

of code partitioning. GraphPIM [6] demonstrates the perfor-

mance benefits for graph applications by offloading the atomic

operations to PIM. Nonetheless, concurrent memory access is

not fully taken into account in both PEI and GraphPIM as

far as we know, so it may result in unnecessary code being

transferred into PIM. We will then present why and how

concurrent memory access could change and impact overall

system performance.

B. Concurrent Memory Access Model

Average memory access time (AMAT) is a standard metric

to analyze memory system performance. An implicit assump-

tion of AMAT is, the memory only supports sequential ac-

cesses and do not have multiple accesses coinciding. A recent

performance model, Concurrent-AMAT (C-AMAT) [8], [9],

was developed to extend with the consideration of concurrent

memory access. C-AMAT provides a more accurate analysis of

modern memory systems where concurrent memory accesses

are common.

One of the important concepts introduced by C-AMAT

is pure miss. pure miss contains at least one miss cycle
which does not have any hit access overlapped with. Due to

concurrent memory access, during miss cycles overlapped with

one or more hit cycles, the processor can still work. However,

if a miss cycle has no hit to overlap with, it can severely

hurt the performance. Therefore, reducing pure misses, as

well as pure miss cycles, can significantly improve the overall

performance.

Based on the insights from the C-AMAT model, we use the

pure miss cycle rate of LLC (θ) to describe the cache efficiency
of a loop code block in graph-computing applications when

considering concurrent misses:

θ =
of LLC Pure Miss Cycles

of Total CPU Cycles
. (1)

The higher the θ value, the greater the probability that this code
block would introduce a longer CPU stall time. To maximize

performance, we can offload the code block with a high θ value
into PIM logic to relieve the pressure on memory accesses and

reduce the overall execution time.

C. Motivation

Due to the performance difference between CPU and PIM

processors, migrating too many tasks to the PIM side for

execution may lead to a decline in overall performance. So the

room for improvement of PIM workload partitioning is to find

the most critical factor that causes the performance degradation

to judge the code block whether needs to be transferred to

PIM or not. It has been suggested in the C-AMAT model

that pure miss becomes the critical factor that could most

hurt the performance. As illustrated in [8], [9], memory

Poster101.pdf 2 7/31/2021 8:09:43 PM

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on October 01,2021 at 07:27:41 UTC from IEEE Xplore. Restrictions apply.

Bellman-Ford Shortest Path(G, w, v)

(a) (b)

D
at

a
Ac

ce
ss

1
2
3
4
5

Cycle
hit hit/miss pure miss

1
2
3
4
5

D
at

a
Ac

ce
ss

1: for i =1 to |G.V|-1 do:
2: if v is source then v.d = 0
3: else v.d = infinity
4: v' = null
5: for i =1 to |G.V|-1 do
6: for each edge(u,v) with weight w in edges:
7: if v.d >u.d + w(u,v)
8: v.d = u.d + w
9: v' = u
10: for each edge(u,v) with weight w in edges:
11: if v.d > u.d + w(u,v)
12: return FALSE
13: return TRUE

Cycle

Fig. 1. Example of workload partitioning in CoPIM. (a) Code snippet of
Bellman-Ford Shortest Path algorithm. G: graph structure; |G.V|: vertices;
w: distance weight; v: vertex; v’: predecessor of v; v.d: distance to v;
u: intermediate node; u.d: distance to u; w(u,v): distance from u to v. (b)
Concurrent memory accesses of 2 loops.

concurrency reduces the memory stall time by overlapping

multiple memory accesses. A single cache miss latency is no

longer a determinant factor of the memory system.

By taking the C-AMAT model’s inspirations, we find that

code blocks with the higher pure miss cycle rate are the

most potent part of an graph-computing application to be

transferred to PIM. These could bring two benefits: first, the

pure miss cycle rate is considered a more accurate metric to

determine the critical memory misses so that we can achieve

more optimal performance under this guidance; second, we

can reduce unnecessary code migration, leaving more work

executed on the host CPUs with higher performance.

III. COPIM FRAMEWORK

A. Overview

Previous works have used different granularities for PIM

workload offloading. For example, PEI [4] offloads workload

at the granularity of instruction. It is much more accurate than

other methods, but one consideration is that the overhead of

the frequent judgment of PIM instructions will be high. Some

other works choose to offload the application under the code

block granularity. For example, Prometheus [13] uses Low

Level Virtual Machine (LLVM) to partition the application

into many different code blocks. It examines the relationship

between these blocks and the memory access characterization

of the code blocks to establish the partitioning strategy. Com-

pared with instruction-level offloading, this method reduces

the frequent decision of offloading targets and reduces the

overhead accordingly. Nevertheless, it takes too much time

for large programs to use LLVM to obtain dynamic traces and

may transfer too many code blocks to PIM.

In this work, we select the loop body in graph-computing
applications as a code block to do the workload offloading.

There are three reasons for offloading in the granularity of

loop body: (1) Loop bodies account for a large proportion in

graph-computing application and can easily be located. (2) The

ubiquitous loop bodies often become the focus of optimization

due to frequent memory access operations. (3) To avoid the

significant overhead of the PIM target judgment compared

with finer granularity such as instruction.

For each miss cycle,
if it appears in

Hit Cycle Table ?

Yes

Finish

LLC requests

Hit in LLC? Hit Cycle Table++

Miss Cycle Table++

No

Track the miss
status in MSHR

No

pure miss++
Compare 2 tables

Fig. 2. Workflow of pure miss detection.

Fig. 1(a) illustrates a code snippet of the Bellman-Ford

Shortest Path algorithm that computes the shortest paths from

a single source vertex to all of the other vertices in a weighted

graph. There are two main steps: (1) initialization (line 1-4):

choose a starting vertex and assign infinity path values to all

other vertices; (2) relaxation (line 5-9): better ones replace

approximations to the correct distance until they eventually

reach the solution. In the code snippet, we mark two loops

to indicate the different memory behavior under the definition

of pure miss. Fig. 1(b) shows the concurrent memory access

schematic diagram of 2 marked loops. The first loop is for

initialization, which causes two pure miss cycles; the second

loop is for relaxation, which causes five pure miss cycles.

The different memory access behaviors mainly come from

the loops’ different operation complexity. As illustrated in the

example, pure miss is an effective measurement to examine

memory behavior with the consideration of concurrency.

B. CoPIM Workflow

In the CoPIM workflow, the most important step is to detect

the pure miss. We distinguish pure miss with the flow shown

in Fig. 2. Once memory requests come into the LLC is hit,

the request will be served by sending data to the register file

immediately, and we will track the hit cycle in a Hit Cycle

Table (HCT). Otherwise, if miss, a new Miss Status Holding

Register (MSHR) entry and cache line will be reserved for this

data request, and we will track this miss cycle in a Miss Cycle

Table (MCT). After we get the hit and miss cycle tables of the

first 5% loop iterations, we will search for each miss cycle of

MCT in HCT. If the miss cycle does not appear in HCT, we

define this miss cycle as a pure miss cycle. Additionally, we

can measure the pure miss cycle rate defined in Section II-B.

In our work, we adopt the sampling method for the first

5% of the loop iterations on the host CPU side. Furthermore,

the pure miss cycle rate (θ) is used to determine whether the
rest codes of the loop are placed into memory for execution

or not. The workflow of CoPIM is shown in Fig. 3. When an

application comes in, CoPIM locates all the loops and puts

the non-loop part directly on the host CPU for execution,

thus completing a preliminary program division. As described

in the prior sections, CoPIM focuses on loops, which are

conditional offloading candidate code blocks. Therefore, when

the program executes a loop body, we take the first 5% of

the loop iterations to do sampling. We make these portions of

Poster101.pdf 3 7/31/2021 8:09:43 PM

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on October 01,2021 at 07:27:41 UTC from IEEE Xplore. Restrictions apply.

Define codes in
loop as

code blocks

Execute on
HMC

Select the first 5%
iterations to execute

on host CPU

YesSource C
ode

Is the code
belong to a loop

body?

Measure θ to rule
offloading of the rest
iterations , is θ >5%

Execute on
host CPU

Yes

Finish

NoNo

Fig. 3. CoPIM workflow for selecting offloading targets.

loops executed on the host CPU and use the CoPIM offloading

architecture to distinguish the LLC pure miss cycle rate(θ). In
general, when the code block leads to a high value of θ, the
memory access characteristics of the code block are indigent.

If the value of θ is greater than 5%, we transfer all the rest
of the loop block into memory for execution; Otherwise, we

continue to execute the rest portion of the loop on the host

CPU. The threshold of θ will be discussed in Section IV-C5.

CoPIM does not restrict the method to identify loops. For

example, loops can be annotated manually in the source

code or identified automatically by the compiler. By any

loop identification method, the instruction set needs some

modifications to let the CPU know which instructions are

related to loops in the original source code. In CoPIM, we

use a CUDA-like mechanism for loop identification. We use

MACRO to mark the start and the end of the loop, then the

compiler can identify the loops and translate the marks into

the binary code.

C. Architecture Integration

Fig. 4 shows the architecture of CoPIM, which can be

divided into the Host and Hybrid Memory Cube (HMC) parts.

On the host side, we have configured 4 out-of-order (OoO)

CPU cores and equipped them with three cache levels, in

which L1 and L2 are private for each core, and LLC is

shared. L1 is divided into the I-cache and D-cache. To keep

the architectural changes non-intrusive to current hardware

architectures, we only make simple modifications to L1 I-

cache and L3 cache to implement the functions of CoPIM,

which will be described below. The HMC side mainly contains

the data switch component, the vault logic, and the stacked

DRAM layers. There are 16 vaults in our work. At the same

time, we equip the logic layer of each vault with a simple

sequential CPU core. The host and HMC are connected by

high-speed links, which typically run at several gigabits per

second per bit-lane. Requests flow over the high-speed links

to an interconnect that transmits them to their target vault

controller. Each vault controller sends commands to write/read

data to/from the memory banks in each partition. After the

O
oO

 C
or

e
O

oO
 C

or
e

L1-I

L1-D

L2

La
st

-le
ve

l C
ac

he

L1-I

L1-D

L2

L1-D

H
M

C
Co

nt
ro

lle
r

PM
C

Links Sw
itc

h

DRAM
Partition

DRAM
Partition

DRAM
PartitionIn-order Core

Vault0 Logic

Vault1 Logic

Vault15 Logic

HOST HMC

...

... ...L1-I

In-order Core

In-order Core

IM
U

IM
U

LLC

MSHR

HCT

MCT

Mem Inst

{loop body}?

to L1
N

Y
θ > 5%?

to L1
N

Y
to HMC

valid

valid miss cycles

hit cycles

Fig. 4. CoPIM architectural designs to support the workload offloading.

DRAM access completes, data will be transferred back through

the interconnect to the high-speed links.

1) Pure Miss Counter: In CoPIM, We have implemented
the measurement of pure miss in LLC. The measurement is

realized by adding a Pure Miss Counter (PMC) unit in the

LLC. We record the information of hit/miss cycles at the same

time to find out the pure miss cycle. In the PMC unit, we

design two tables: HCT and MCT, to record the behavior of

the LLC and the cycle of hit and miss. As shown in Fig. 4,

the PMC unit is implemented by connecting the LLC and

the MSHR structures. The case of hit cycle can be obtained

by comparing the tag of LLC. When the tag is matched, the

cache is hit. All cache miss status is tracked by MSHR. When

a missed request arrives at the MSHR, the MCT will also track

this miss status. Furthermore, a pure miss cycle is determined

by searching each miss cycle of MCT in HCT to see if this

miss cycle has no hit cycles overlapped.

2) Instruction Management Unit: The program is divided

into two parts: loops and the others. For the portion without

loops, we directly execute these parts of code on the host CPU,

while the real potential PIM execution object is the loop body.

After sampling, if its pure miss cycle rate of LLC is greater

than 5%, we will transfer this loop into memory to execute. As

shown in Fig. 4, CoPIM integrates an Instruction Management

Unit (IMU) in each host core, which determines the data path

of instructions. We load the instructions that do not need to

be executed in memory directly into the next level cache to

complete the execution on the host CPU side. While for the

instructions annotated as PIM execution, these instructions are

delivered to the PIM by sending memory requests, which is

shown as the grey line in Fig. 4, and the PIM side will execute

these instructions in succession.

IV. EVALUATION

A. System Configuration

We use PIMSim [14], an open-source PIM simulator based

on Gem5, to evaluate the effectiveness of CoPIM. PIMSim

Poster101.pdf 4 7/31/2021 8:09:43 PM

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on October 01,2021 at 07:27:41 UTC from IEEE Xplore. Restrictions apply.

TABLE I
SYSTEM CONFIGURATIONS.

Configuration

Host Side

Processor 4 Cores, OoO, 2GHz, 192-entry ROB

Private L1 Cache
Separated 32KB I/D-Cache per
core, 8-ways, 2-cycle hit latency,
8-entry MSHR, 64B line size

Private L2 Cache 256KB/core, 8-ways, 12-cycle hit
latency, 12-entry MSHR, 64B line size

Shared L3 Cache shared 2MB/core, 32-ways,
35-cycle hit latency, 32-entry MSHR,
64B line size

PIM Side
PIM Logic

16 PEs, in-order pipeline,
1 PE/vault, 500MHz

Private Cache 32KB/PE, 4 ways, 64B line size
Memory HMC v2.1 [15], 16 vaults, 256 banks

TABLE II
BENCHMARKS AND DATA SETS.

Benchmark Dataset
Breadth-First Search p2p-Gnutella30 (36K Verticies, 88K Edges),
(BFS), Bellman Ford com-DBLP (317K Verticies, 1M Edges),
Shortest Path (SP), com-Youtube (1.1M Verticies, 2.9M Edges),
PageRank (PR) wiki-Talk (2.3M Verticies, 5M Edges),

soc-LiveJournal (4.8M Verticies, 6.9M Edges)

provides a variety of PIM instructions for the PIM architecture.

To realize the multi-platform implementation of PIM architec-

ture, PIMSim uses Gem5 pseudo instructions to implement
PIM instructions. The detailed PIM architecture parameters

are listed in Table I.

The following experimental results involve four kinds of

simulation configurations (1) CPU-only: this is a conventional

architecture that uses HMC as the main memory and does

not offload any operations to the memory. (2) PEI [4]: during

the real execution, we assume the system uses a locality-

aware offloading approach to decide where the PIM operations

should be executed (i.e., all requests that can incur the on-

chip cache hit are served by the host processors. Otherwise,

they will trigger further execution within the memory). (3)

GraphPIM [6]: based on GraphPIM’s observation of the source

program of graph applications, it is found that accessing

the graph property using atomic functionalities is easy to

cause the inefficient utilization of the memory subsystem,

which is suitable for PIM. (4) CoPIM: the partitioning method

discussed in this paper.

B. Benchmarks and Workloads

We use several typical graph workloads as PIM applications

for evaluation, which were also used in [4], [6]. We use real-

world graphs to make the results more reliable. As shown in

Table II, the numbers of the workloads’ vertices vary from

36K to 4.8M.

C. Experimental Results

1) Percentage of code offloading: To explore why and how
CoPIM improves the performance, we evaluate the percentage

of instructions executed at the PIM side during the execution of

the entire application when using different data sets. As shown

0%

10%

20%

30%

40%

50%

60%

BFS PR SP BFS PR SP BFS PR SP BFS PR SP BFS PR SP

%
 O

ffl
oa

de
d

PI
M

 In
st

ru
ct

io
n

PEI GraphPIM CoPIM

p2p-Gnutella30 com-DBLP wiki-Talk soc-LiveJournal1com-Youtube

Fig. 5. Percentage of offloaded instructions into memory.

0

0.2

0.4

0.6

0.8

1

BFS PR SP BFS PR SP BFS PR SP BFS PR SP BFS PR SP GM

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

CPU-only PEI GraphPIM CoPIM

p2p-Gnutella30 com-DBLP wiki-Talk soc-LiveJournal1com-Youtube
GM

Fig. 6. Normalized performance evaluation using graphs of different
sizes, GM: geometric mean.

in Fig. 5, CoPIM tends to offload 51.1% fewer instructions into

PIM on average compared with PEI. Furthermore, for each

application using different sizes of the data set, CoPIM all

tends to offload fewer instructions than PEI. Compared with

GraphPIM, CoPIM also offloads 33.0% fewer instructions on

average.

2) Performance with different partitioning methods: In

this paper, we use the execution time of the entire applica-

tion to evaluate the different partition methods’ efficiency.

Fig. 6 shows the normalized execution time and geometric

mean(GM) of 3 kinds of partition strategies. Generally, CoPIM

achieves a 38% speedup by the geometric mean over CPU-

Only. Compared with PEI, when the input size is small,

such as p2p-Gnutella30, CoPIM performs 7.5% better than

PEI on average. When the input size gets large, such as

soc-LiveJournal1, CoPIM performs 46.4% better than PEI on

average. CoPIM tends to show better performance as the data

set enlarges and achieves a speedup by the geometric mean of

19.5% than PEI. Compared with GraphPIM, CoPIM achieves

a speedup by the geometric mean of 11.4%.

3) Energy evaluation : Fig. 7 shows the normalized energy
consumption breakdown of un-core aspects when running

the BFS application with different data sets. We investigate

the energy consumption considering three aspects which are

caches, HMC Serializer/Deserializer (SerDes) Link and HMC-

other(DRAM layer and logic layer). We model the cache using

CACTI 6.0 [16]. The energy of HMC-link is considered to

be 13.7pJ/bit [17]. Energy per bit is considered at 3.7 pj for

the DRAM layers and 6.78 pj/bit for the logic layer [18].

As shown, CoPIM reduces the un-core energy consumption

by 18% on average over CPU-only. Compared with PEI and

GraphPIM, CoPIM reduces 6.8% and 6.5% energy consump-

tion on average, respectively. The energy savings mainly come

from HMC-link, and the HMC-other. This is because of the

reduction of workload offloading, which saves the energy of

Poster101.pdf 5 7/31/2021 8:09:44 PM

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on October 01,2021 at 07:27:41 UTC from IEEE Xplore. Restrictions apply.

0

0.2

0.4

0.6

0.8

1

C
PU

-o
nl

y

PE
I

G
ra

ph
PI

M

C
oP

IM

C
PU

-o
nl

y

PE
I

G
ra

ph
PI

M

C
oP

IM

C
PU

-o
nl

y

PE
I

G
ra

ph
PI

M

C
oP

IM

C
PU

-o
nl

y

PE
I

G
ra

ph
PI

M

C
oP

IM

C
PU

-o
nl

y

PE
I

G
ra

ph
PI

M

C
oP

IM

N
or

m
al

iz
ed

 E
ne

rg
y

Caches HMC-link HMC-other

p2p-Gnutella30 com-DBLP wiki-Talk soc-LiveJournal1com-Youtube

Fig. 7. Normalized energy consumption breakdown of un-core aspects.

0.5

0.6

0.7

0.8

0.9

1.0

BFS PR SP BFS PR SP

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

CPU-only PEI GraphPIM CoPIM

500Mhz 1Ghz

Fig. 8. Normalized Performance with different PIM processor frequencies
using wiki-Talk data set.

data transfers via HMC SerDes links and the energy of DRAM

and logic layer.

4) Performance with different PIM processor frequencies:
As shown in Fig. 8, we evaluate the performance of 2 different

PIM processors’ frequencies: 500MHz and 1GHz with wiki-

Talk data set. With the improvement of the PIM processors’

frequency, the performance of three different offloading meth-

ods has been improved slightly. Compared with GraphPIM,

CoPIM shows little difference in performance on average as

the frequency increases. Compared with PEI, CoPIM achieves

a 9.5% speedup on average with 500MHz PIM processors, but

only 4.0 % when the PIM processors’ frequency is promoted

to 1GHz. Due to the lack of consideration of memory con-

currency, PEI will introduce much more computation-transfer

between CPU and PIM processors than CoPIM. When the PIM

processors’ frequency is 500MHz, more computation-transfer

means the benefits of reducing the data movement can be offset

by the weak performance of PIM processors.

5) Sensitivity of θ : As shown in Fig. 9, we investigate
the effect of θ value on execution efficiency. We select wiki-
Talk as the input data set and examine the difference in the

execution time of 3 different applications when the θ value
varies from 1% to 10%. The results show that the lowest

execution time of BFS and PR is around 5%, and the minimum

execution time of SP is when θ is 8%, but the difference
between the execution time when θ sets at 8% and 5% is

only 1.2%. Thus, we select 5% as the threshold of θ.

V. CONCLUSIONS

In this work, we propose CoPIM, a novel PIM graph-

computing workload offloading architecture. CoPIM offloads

code in the granularity of the loop code block. Based on a

concurrent memory access model, CoPIM identifies the can-

didates for PIM acceleration during the first few iterations of a

0.75

0.8

0.85

0.9

0.95

1

1% 3% 5% 8% 10%

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

θ value

BFS PR SP

Fig. 9. Sensitivity of θ of 3 different applications with wiki-Talk data set.

loop code block. We also provide detailed architectural designs

to support the offloading. The CoPIM has been evaluated on a

state-of-the-art PIM architecture with a wide range of graph-

computing applications. The results show that CoPIM reduces

the size of offloading instructions and also improves the overall

performance. Compared with other PIM workload offloading

frameworks: 1) CoPIM achieves a speedup by the geometric

mean of 19.5% than PEI with 51.1 % fewer offloaded in-

structions on average. 2) CoPIM achieves a speedup by the

geometric mean of 11.4% than GraphPIM with 33.0% fewer

offloaded instructions on average.3) CoPIM reduces the un-

core energy consumption by 6.8% and 6.5% on average over

PEI and GraphPIM, respectively.

REFERENCES

[1] B. Rogers et al., “Scaling the bandwidth wall: challenges in and avenues
for CMP scaling,” in ISCA, 2009, pp. 371–382.

[2] M. Horowitz, “1.1 Computing’s energy problem (and what we can do
about it),” in ISSCC, 2014.

[3] S. Kanev et al., “Profiling a Warehouse-Scale Computer,” IEEE Micro,
vol. 36, no. 3, pp. 54–59, 2016.

[4] J. Ahn et al., “PIM-enabled instructions: A low-overhead, locality-aware
processing-in-memory architecture,” in ISCA, 2015, pp. 336–348.

[5] M. Gao et al., “Practical near-data processing for in-memory analytics
frameworks,” in PACT, 2015, pp. 113–124.

[6] L. Nai et al., “Graphpim: Enabling instruction-level PIM offloading in
graph computing frameworks,” in HPCA. IEEE, 2017, pp. 457–468.

[7] A. Boroumand et al., “CoNDA: Efficient Cache Coherence Support for
Near-Data Accelerators,” in ISCA, 2019, pp. 629–642.

[8] Y. Liu and X. H. Sun, “LPM: A Systematic Methodology for Concurrent
Data Access Pattern Optimization from a Matching Perspective,” IEEE
TPDS, vol. PP, no. 99, pp. 1–1, 2019.

[9] D. Wang and X. H. Sun, “APC: A Novel Memory Metric and Measure-
ment Methodology for Modern Memory Systems,” IEEE Transactions
on Computers, vol. 63, no. 7, pp. 1626–1639, 2014.

[10] M. Drumond et al., “The mondrian data engine,” in ISCA, 2017.
[11] Y. Zhuo et al., “GraphQ: Scalable PIM-Based Graph Processing,” in

MICRO, 2019.
[12] J. Liu et al., “Processing-in-Memory for Energy-Efficient Neural Net-

work Training: A Heterogeneous Approach,” in MICRO, 2018.
[13] Y. Xiao et al., “Prometheus: Processing-in-memory heterogeneous archi-

tecture design from a multi-layer network theoretic strategy,” in DATE,
2018, pp. 1387–1392.

[14] S. Xu et al., “PIMSim: A flexible and detailed processing-in-memory
simulator,” IEEE Computer Architecture Letters, vol. 18, no. 1, pp. 6–9,
2018.

[15] H. M. C. Consortium et al., “HMC Specification 2.1,” Retrieved May,
2019.

[16] N. Muralimanohar et al., “Cacti 6.0: A tool to model large caches,”
Bragantia, 2009.

[17] E. Azarkhish et al., “Design and evaluation of a processing-in-memory
architecture for the smart memory cube,” in ICACS, 2016.

[18] J.Jeddeloh et al., “Hybrid memory cube new dram architecture increases
density and performance,” Digest of Technical Papers - Symposium on
VLSI Technology, pp. 87–88, 2012.

Poster101.pdf 6 7/31/2021 8:09:44 PM

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on October 01,2021 at 07:27:41 UTC from IEEE Xplore. Restrictions apply.

