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Abstract—Graph pattern matching (GPM), a critical algo-
rithm for discovering specific patterns within complex structures,
is becoming increasingly important in the data-driven world.
GPM applications are memory-bound and can be accelerated
by memory-centric computing systems, such as processing-in-
memory (PIM). However, there are three primary challenges
when it comes to accelerating GPM applications with PIM: (1)
difficulty in utilizing locality, (2) heavy data movement, and (3)
heavy comparison overhead due to pruning. To address these
challenges, we propose AceMiner, a framework to accelerate
GPM applications with a software and hardware co-design per-
spective using PIM. In AceMiner, we embed hybridCache, a novel
in-DRAM cache system with lower access latency and optimized
replacement policy, to leverage the potential locality and reduce
data movement in PIM. Additionally, we introduce a comparison
unit to address the huge pruning overhead. Experimental results
show that AceMiner outperforms the state-of-the-art, achieving
speedups of 40.2% and 13.3% over NDMiner and DIMMining
respectively, with less energy consumption and design overhead.

Index Terms—Graph pattern matching, Processing-in-memory,
Cache system

I. INTRODUCTION

Graph Pattern Matching (GPM) algorithm involves identi-
fying subgraphs (a.k.a embeddings) within a larger graph that
conform to specific patterns (as shown in Fig. 1(a)). GPM al-
gorithms are widely used in various domains, including bioin-
formatics [1], cheminformatics [2], web spam detection [3],
and social sciences [4]. However, the GPM algorithms are
always memory-bound [5]–[7]. The intricate nature of GPM
algorithms, characterized by increased algorithmic complexity
and irregular memory accesses, renders it more challenging
than standard graph processing [8]–[11]. Consequently, op-
timizing GPM applications on traditional processor-centric
systems like CPUs and GPUs poses significant challenges [7].
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1:  procedure GPM_TC(G,P)
2:    for v0 ∈ V    
3:      for v1 ∈ N(v0) and v1> v0

4:        for v2 ∈ N(v0) ∩ N(v1) and v2 >v1

5:               (v0, v1, v2) is an subgraph
6:                     subgraph += 1

①

②

③

① :  Potential locality 
        N(v0)  is reused in two continous iterations

③ :  Heavy comparison overhead
if v0 = 10, v1> v0
     v1 ∈ N(v0) = {0, 1, 3, 4, 6 ,7, 8, 9, 11}

discarded

② :  Heavy data movement

bus
N(v1)N(v0) ...

       transfer

(a)

(b) (c)

Fig. 1. Overview of GPM algorithm. (a) An example of triangle counting(TC),
3 triangles are found in input graph G. (b) Pseudo code for TC. (c) Challenges
in GPM applications.

Processing-in-Memory (PIM) architectures represent a shift
from traditional processor-centric systems to a memory-centric
computation paradigm. PIM aims to reduce data movement
costs by embedding general-purpose or specialized processing
units within or near memory modules. This approach can sig-
nificantly lower data access latency and increase throughput,
prompting considerable research into PIM-based hardware and
software co-designs, particularly for GPM applications [5]–[7].
However, the elevated computational complexity and intense
memory access demands of GPM applications pose unique
challenges in effectively leveraging PIM architectures. These
challenges include difficulty in utilizing data locality, substan-
tial data movement, and significant comparison overhead for
avoiding duplicate subgraph findings.

Difficulty in utilizing locality. Accessing vertices and
edges in GPM algorithms often results in non-sequential
patterns [6]–[8]. This challenge is further exacerbated by the
reliance of GPM algorithms on a set-centric programming
model [12], which leads to poor data locality. While strategies
such as vertex reordering or graph partitioning have been
explored to enhance data regularity and improve locality,
these approaches can incur overheads significantly, sometimes
higher than the GPM process itself [6], [7]. Despite these chal-
lenges, there remains untapped potential for improving locality
in GPM applications, particularly in current PIM-accelerated



architectures. For instance, the set-centric model typically
involves repeated access to specific data sets at various loop
levels. As illustrated in Fig. 1(b), the neighbor set N(v0) of
vertex v0 is repeatedly utilized in consecutive iterations. This
observation implies that caching N(v0) could be a beneficial
approach to leverage this locality effectively. More complex
patterns, especially those involving deeper iterations, would
likely result in greater reuse of neighbor sets [13]. However,
the limited cache capacity in existing PIM architectures, a
limitation arising from the area and heat dissipation concerns,
hinders the full exploitation of this potential locality [14].

Heavy data movement. While PIM architectures are de-
signed to minimize data transfers between DRAM and CPUs,
managing substantial data movement within the PIM architec-
ture remains a significant challenge for GPM applications. As
datasets rapidly increase in size and scope, more than a single
PIM module is needed to meet increasing memory storage de-
mands, necessitating the deployment of multiple PIM modules.
Multiple PIM modules, interconnected in dual in-line memory
module (DIMM)-like or network-on-chip (NoC)-like configu-
rations, experience considerable internal data movement [6],
[15], as depicted in Fig. 1(c). Current GPM accelerators,
such as DIMMining [7] and NDMiner [6], primarily focus
on reducing data transfers between DRAM and CPUs, yet
they do not fully address the optimization of data movement
between PIM modules [5]–[7]. Given the irregular access
patterns typical in GPM algorithms, data movement within
the PIM architecture is substantial and represents a significant
opportunity for enhancing efficiency.

Heavy comparison overhead. Advanced GPM algorithms
frequently employ symmetry breaking (a.k.a pruning) to avoid
detecting the same subgraph across multiple iterations (avoid-
ing duplicate subgraph findings). This process involves com-
paring vertices to filter out those that do not meet the pattern
search sequence constraints, as demonstrated in Fig. 1(b)
line 3, 4. However, recent studies indicate that most vertices
retrieved in one iteration are often discarded in the subsequent
one (Fig. 1(c)) [6], [7]. Symmetry breaking reduces calcula-
tions but increases comparison overhead, leading to inefficient
use of CPU cache and DRAM bandwidth due to unnecessary
vertices loading from memory to processing unit. This trade-
off between reducing computation and loading unnecessary
memory presents challenges for frameworks that aim to opti-
mize performance and energy efficiency. DIMMining [7] has
implemented an index pre-comparison method to decrease
the redundant vertices loading overhead, but it introduces
additional storage demands and programming burdens.

In response to the identified challenges, we introduce AceM-
iner, a groundbreaking software and hardware co-designed
framework tailored for GPM applications in multiple PIM
systems. AceMiner stands out with its distinctive features.
First, AceMiner presents an advanced programming inter-
face developed to enhance efficient set-centric operations in
GPM applications for PIM systems. Second, AceMiner is
distinguished by its integration of hybridCache, an in-DRAM
cache solution specifically designed as a core component for
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Fig. 2. Multiple PIM architecture based on 3d-stacked memory technologies.
PIM systems. To the best of our knowledge, this represents
the first implementation of an in-DRAM cache tailored to
boost the performance of GPM applications within a PIM
framework. Our hybridCache provides rapid data access and
utilizes data locality, which are especially beneficial in GPM
applications characterized by frequent neighbor set reuse,
thereby significantly reducing data movement within PIMs.
Moreover, hybridCache incorporates an advanced replacement
policy, strategically developed to manage the irregular memory
access patterns typical in GPM applications, further optimiz-
ing memory efficiency and enhancing system performance.
Third, AceMiner seamlessly integrates comparison units with
hybridCache. This integration enables AceMiner to conduct
highly efficient comparison processes in symmetry breaking
for frequently accessed data sets, leading to considerable
bandwidth savings and minimal area overhead. Comprehen-
sive experiments on real-world graphs show that AceMiner
achieves a 40.2% and 13.3% speedup over state-of-the-art
frameworks NDMiner [6] and DIMMining [7], respectively.

II. BACKGROUND AND MOTIVATION

A. Processing in Memory

PIM effectively addresses the memory-bound problem by
relocating computation to the location of data, which leverages
high internal memory bandwidth through 3D stack technology
and minimizes the need for costly off-chip data transfers [16].
With the help of PIM, significant performance improvements
have been observed in various applications, including data
analytics, deep neural network (DNN) training, graph pro-
cessing, and GPM applications [5]–[7]. Key characteristics of
PIM architectures include multiple processing units within the
memory chip, offering higher bandwidth and lower latency
than the host processor [14]. The processing units, ranging
from general-purpose cores to specialized processors, typically
operate at a few hundred megahertz and are equipped with
a limited number of registers and modest-sized cache or
scratchpad memory [14] for local data storage and movement.

In this work, we concentrate on PIM systems constructed
using 3D-stacked memories like Hybrid Memory Cube (HMC)
and High-Bandwidth Memory (HBM), as they offer a balance
between technological maturity and performance benefits [15].
As shown in Fig. 2, such an PIM system typically consists of
multiple interconnected memory stacks, forming a memory
network. Each stack comprises DRAM dies stacked vertically



atop a logic die. Through-silicon vias (TSVs) allow low-
latency, high-bandwidth inter-die connectivity, e.g. hundreds
of GB/s to several TB/s. HMC and HBM employ divergent
organizational paradigms within stacks. HBM partitions indi-
vidual DRAM dies, treating different chunks across dies as
independent channels. Comparatively, HMC also divides dies
but consolidates matching portions from all into a vault akin
to conventional channel access. The PIM system associates
computing logic with each HMC vault or HBM channel,
directly placing logic on the bottom die in true 3D or via 2.5D
interposer-based integration. In this work, we use general-
purpose and energy-efficient cores as the PIM processing unit,
although our architecture can accommodate other types of
logic, such as reconfigurable logic [17], [18] and application-
specific integrated circuits (ASICs) [19], [20].

B. Graph Pattern Matching

GPM algorithm aims at finding all unique subgraphs within
an input graph G that are isomorphic to a specified pattern
P . Isomorphism here implies a one-to-one correspondence
between vertices and edges of P and the subgraph. GPM
algorithm employs a search tree to enumerate subgraphs in
G that match a defined pattern P . This process begins from
a single vertex, expanding one vertex or edge at a time
through multiple layers of nested loops, each corresponding
to a vertex in P . For instance, a triangle pattern requires three
such loops. Advanced GPM algorithms follow a set-centric
programming paradigm, utilizing set operations like intersec-
tion and difference to manage neighbor relationships. In order
to prevent duplicate subgraph findings, symmetry breaking
constraints are applied based on P . For example, as shown
in Fig. 1(b), lines 3 to 4, v1>v0 and v2>v1, are constraints
of symmetry breaking to avoid counting duplicate subgraphs.
Typically, GPM algorithms are classified into two primary
categories: pattern-oblivious and pattern-aware. Pattern-aware
GPM algorithms are generally more efficient than their pattern-
oblivious counterparts, primarily due to their enhanced ability
to eliminate redundant computations [21]. In this work, we
focus on utilizing pattern-aware algorithms.

GPM applications typically utilize a task-based program-
ming and execution model, which is also prevalent in many
data-centric workloads to enhance parallelism [6], [9], [13]. A
task-based model divides a computational task into indepen-
dent subtasks, which are executed simultaneously on multiple
processing units. These subtasks have clear inputs and outputs
and do not rely on each other, allowing for parallel processing.
The task-based model offers a flexible approach to scheduling
computation loads within an application. It is particularly
effective for PIM, which often encompasses hundreds of
processing units. Additionally, it provides the foundation for
efficiently managing remote neighbor set accesses, a crucial
aspect in GPM applications. Furthermore, task abstraction
facilitates the integration of data access information, such as
the addresses required by a task. In this work, we adopt the
task-based model, capitalizing on its inherent advantages to
achieve optimal performance in GPM applications.

C. Motivation
The primary challenges in GPM applications include poor

locality, heavy data movement, and significant comparison
overhead associated with symmetry breaking. We identify
that the set-centric programming paradigm, commonly used
in GPM algorithms, results in extensive reuse of neighbor
sets across different loop levels, especially in complex pat-
tern searches. In conventional processor-centric architectures,
caches are commonly utilized to enhance program local-
ity [22], [23]. However, in current PIM architectures, cache
system of PIM side which is a high-speed memory system
for temporary data storage, faces capacity limitations due to
area and heat dissipation constraints. Therefore, they cannot
fully exploit the potential locality in GPM applications. We
draw inspiration from in-DRAM cache technology to design
a novel cache system and replacement policy, specifically
tailored for PIM architectures. The innovative cache system is
crafted to meet the locality demands of GPM applications. It
also addresses the challenge of heavy data movement in GPM
applications by caching remotely accessed data locally, thereby
significantly enhancing overall data processing efficiency. Fur-
thermore, as symmetry breaking in GPM applications often
discards a substantial portion of vertices after initial loading,
we integrate comparison units with hybridCache to reduce the
considerable overhead of useless memory loads.

III. SYSTEM DESIGN

In this section, we first outline the hardware architecture of
AceMiner. Subsequently, we delve into the details of our pro-
posed hardware-software co-optimizations within AceMiner,
aimed at addressing the key challenges of utilizing locality,
reducing heavy data movement, and minimizing comparison
overhead of symmetry breaking in GPM applications.

A. Hardware Architecture
Fig. 3 shows the overall architecture of AceMiner, which

can be divided into the host and PIM parts. On the host
side, as depicted in Fig. 3(a), we have configured 4 out-of-
order (OoO) CPU cores and equipped them with three cache
levels, in which L1 and L2 are private for each core, and
LLC is shared. L1 is divided into the I-cache and D-cache.
The PIM controller coordinates data transfers between the host
and PIM side, handling the distribution and reception of data
for high performance, reliable and efficient memory access.
On the PIM side, as depicted in Fig. 3(b), to accommodate
the growing size of graph datasets used in GPM applications
and the large storage demand of intermediate results generated
during the GPM process, AceMiner utilizes a mesh topology
to connect multiple PIMs, which is set by default to a 4⇥4
scale. Each PIM stack comprises 32 processing units and
256 banks, interconnected through a crossbar-based network-
on-chip (NoC). We provision a memory capacity of 4GB
for each PIM stack, amounting to 64GB across the entire
system. Notably, the hardware architecture of AceMiner is
not dependent on any specific memory or interconnection
technologies. Our design can use HMC [24], HBM [16], and



Vault Controller

  Cache Banks 

L1 $

Router

Task Queue

Task Scheduler

Comparison Unit

Data path
Task path

hybridCache

Manager

TAG cache

DRAM Banks 

Processing  Unit (in-order Core)

PIM
0

PIM
1

PIM
2

PIM
3

PIM
4

PIM
5

PIM
6

PIM
7

PIM
8

PIM
9

PIM
10

PIM
11

PIM
12

PIM
13

PIM
14

PIM
15

Multi-PIM Network

Ho
st

 C
PU

PI
M

 C
on

tr
ol

le
r

La
st

-le
ve

l C
ac

he
 

O
oO

 C
or

e

L2

...

O
oO

 C
or

e

L1
-I L2

Va
ul

t

 Banks

Logic 

L1
D

L1
-I

L1
D

(a) (b) (c) 
Fig. 3. Overall AceMiner system architecture. (a) Host side. (b) PIM side. (c) Each vault in the PIM.

1:  procedure GPM_TC(G,P)
2:       for v0 ∈ V    
3:              for v1 ∈ N(v0) and v1> v0
4:                  forv2 ∈ N(v1) 
5:                       N(v0) ∩ N(v1)  and v2 >v1                                    
6:                          (v0, v1, v2) is an subgraph
7:                                 counter += 1

1:  procedure GPM_TC(G,P)
2:       for v0 ∈ V    
3:              for v1 ∈  N(v0)f  = G.filtered_N(v0, vth)
4:                  forv2 ∈ N(v0)f  
5:                         N(v0)f  ∩ N(v1)f = G.filtered_N(v1, vth)
6:                            (v0, v1, v2) is an subgraph
7:                                   counter += 1

     vth = v0

                                     (a)                                                                                (b) 
filter_intersection
filter_difference

filter_load

addr0, len0, addr1, len1, vth 

addr0, len0, addr1, len1, vth

addr0, len0, vth

N(v0) ∩ N(v1)
N(v0) - N(v1)
load N(v0) 

(c) 

     vth = v1

Fig. 4. Programming interface. (a) Original TC Code. (b) AceMiner TC Code.
(c) Host ISA instructions to support PIM.
other 3D memories as long as they exhibit the similar structure,
although HMC is used as a demonstration in the diagram.

For each vault in the PIM, as illustrated in Fig. 3(c), the
processing unit is a simple in-order core, equipped with private
L1 caches for instructions and data. Every core employs a local
TLB to translate virtual addresses into physical addresses.
In support of the task-based execution approach detailed in
Sec. II-B, AceMiner integrates both a task queue and a task
scheduler in each vault. The task queue maintains all enqueued
tasks, and when a core completes a task, the task queue
dequeues a new task for the core to execute. In addition
to the task queue, AceMiner employs a task scheduler to
manage tasks according to a predefined scheduling policy,
which forwards newly generated tasks to suitable PIM units.
Moreover, each core can access data related to tasks from
local and remote memories, managed by the vault controller
and router to ensure effective data retrieval and processing.

We propose hybridCache, a novel PIM side cache system,
as depicted in Fig. 3(c) (red dashed box), which leverages
in-DRAM cache technology [25]. To optimize cache manage-
ment, we incorporate a dedicated manager component within
the vault controller for cache replacement. We utilize a portion
of the DRAM in each PIM unit as an in-DRAM cache, which
offers several advantages. First, the large size of the in-DRAM
cache enables us to fully exploit the locality potential from
the frequently reused neighbor sets. Second, this approach
significantly reduces the cost associated with accessing remote
data. It can cache much remote data locally while improving
the flexibility in task scheduling. The choice of in-DRAM
cache for AceMiner is driven by the strict area constraints
inherent in 3D-stacked memory. Details about hybridCache
and its implementation are discussed in Sec. III-C.

B. Programming Interface
In the AceMiner system, the costly set-related operations

are exclusively offloaded to PIM for acceleration, following
practices established in prior works [5], [6]. In order to

facilitate effective communication of set-related operations
to memory, AceMiner introduces a specialized compiler that
transforms original graph mining code into PIM-friendly code
via the host CPU. As depicted in Fig. 4(a) and Fig. 4(b), the
compiler analyzes the source code to pinpoint instructions that
are suitable for PIM acceleration. These targeted instructions
include computations for set operations, neighbor set loads,
and symmetry-breaking constraints. The compiler then encap-
sulates these identified instructions with PIM-specific instruc-
tions to optimize them for efficient processing in AceMiner.

The PIM instructions, as illustrated in Fig. 4(c), are designed
to complete set-centric computation operations and aid in the
comparison of symmetry breaking. The threshold vertex (i.e.,
vth), crucial for the comparison units (details to be provided in
Sec. III-D), is determined at runtime by the host CPU and then
communicated to the PIM units. In line with recent academic
and industrial PIM implementations, we consider that data
allocated for PIM is stored in physically contiguous memory
blocks [26]. This approach of contiguous memory mapping
ensures that PIM instructions need to translate only a base
address (addr), with the rest of the addresses within a defined
range (len) being straightforward to deduce.

C. hybridCache
In AceMiner, we introduce a novel PIM cache system

named hybridCache. The implementation of hybridCache
enables AceMiner to effectively tackle the challenges of
utilizing locality and managing data movement when using
PIM to accelerate GPM applications. Although there have
been numerous studies on DRAM caches within conventional
architecture, where faster on-die or in-package DRAM is
used as caches for traditionally slower DDR and nonvolatile
memories [25], [27], applying DRAM-based caching in PIM
systems presents distinct challenges. The primary challenges
in integrating an in-DRAM cache into a PIM system include
reducing the latency of access to the in-DRAM cache and
designing an appropriate replacement policy to enhance over-
all system efficiency. These challenges necessitate a unique
approach tailored to the specific demands and architecture of
PIM systems, differing significantly from conventional DRAM
caching strategies.

1) Access Latency Optimization: Generally, the access la-
tency for any cache, whether conventional or in-DRAM cache,
primarily depends on tag searching [25]. In the context of in-
DRAM caches, tag placement significantly differs from that
in conventional CPU-side caches due to the larger size of
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in-DRAM cache tags. Storing all in-DRAM cache tags in
SRAM would greatly reduce latency but would also introduce
substantial area overhead, making it impractical for PIM
systems. Conversely, storing all tags in DRAM accommodates
larger tag sizes but can considerably slow down access speeds.
In AceMiner, we aim to minimize the time spent on tag
searching while avoiding excessive area overhead. To achieve
this, hybridCache employs a lightweight SRAM-based TAG
cache to accelerate data access. All in-DRAM cache tags are
stored in DRAM to meet size requirements, complemented
by a small SRAM-based TAG cache that caches frequently
accessed tags of the in-DRAM cache. This dual-layer design
efficiently reduces the tag searching time for the in-DRAM
cache. The procedure of tag searching within hybridCache is
illustrated in Fig. 5(a). The TAG cache acts as a quick “lookup
table” to determine if a requested data block already resides
in the in-DRAM cache. On a TAG cache hit, the data can be
fetched directly, drastically reducing the overall time needed
to access data from the in-DRAM cache.

Nevertheless, in the event of a TAG cache miss, it becomes
necessary to access the in-DRAM cache to verify the tag and
data area, resulting in the costly activation of DRAM twice. To
minimize the total access time to the in-DRAM cache when
TAG cache misses occur, we propose the implementation of
a bundled access scheme. This approach combines the in-
DRAM tag access and data access within a single row activa-
tion, thereby reducing the overall time required for accessing
the in-DRAM cache. This configuration enables a single,
compound access operation to retrieve both tag and data, based
on the premise that both tag and data are stored together in
each physical DRAM row. Our hybridCache implements a
straightforward modification to the scheduling algorithm of
the memory controller, which now treats separate tag and data
lookups as a unified bundled access. In practice, during an in-
DRAM cache lookup, the memory controller initially issues
standard activation and read commands. These commands
load the requested in-DRAM cache line into the DRAM row
buffer and facilitate the reading of the tag information. The
pivotal advantage of this bundled access approach is that
it obviates the need to reopen a row for subsequent data
access, as illustrated in Fig. 5(b). This innovation leads to
a reduction in the time required to activate a row. By enabling
compound access, hybridCache significantly reduces latency
and enhances overall performance.

2) Advanced Replacement Policy: The memory access pat-
terns in GPM applications significantly differ from those in
conventional applications, primarily due to the prevalence of

cyclic access patterns. Such distinctive behavior reduces the ef-
fectiveness of traditional cache replacement policies like Least
Recently Used (LRU) or Least Frequently Used (LFU). For
instance, with a loop-like pattern, especially when it exceeds
cache capacity, LRU often mistakenly evicts blocks that will
soon be needed due to their recent inactivity [28]. Similarly,
LFU faces challenges as it only tracks metadata over a brief
access period, thus potentially overlooking important long-
term patterns [29]. Neither LRU nor LFU alone can handle
the unique nature of memory accesses and efficiently exploit
locality in GPM applications. Consequently, there is an urgent
requirement for a more comprehensive cache replacement
policy in GPM applications.

In AceMiner, we manage the in-DRAM cache considering
the decisions from both LRU and LFU policies. As illustrated
in Fig. 6, we deploy detectors for LRU and LFU to identify
two potential candidate cache lines for eviction. Subsequently,
we evaluate the reuse distance [28] of the candidates to decide
which cache line should be evicted. The reuse distance is
a metric representing the number of distinct memory ad-
dresses accessed between two consecutive requests for the
same address. Given that GPM algorithms typically exhibit
regular cyclic access patterns, this reuse distance becomes a
reliable indicator for predicting the distance between current
and subsequent requests. By leveraging reuse distance in our
cache replacement policy, we ensure that the data most likely
to be accessed soon remains in the cache, enhancing the
effectiveness of traditional LRU and LFU policies. Our cache
replacement policy aligns with common practices in modern
caching systems and does not impose additional overhead.

3) Other Considerations: The specific characteristic of
GPM applications, which typically requires only read ac-
cesses [5]–[7], allows hybridCache to operate efficiently
without necessitating performance trade-offs for maintaining
coherence requirement. For other applications, like graph
computing with read-write data which requires some sort
of coherence between the PIM cores, our hybridCache only
stores the read-only primary data, data writes bypass the
hybridCache and directly go to the home memory locations,
therefore greatly simplifying the coherence requirement. This
simplified coherence makes hybridCache appropriate for more
diverse applications. Additionally, it is important to note that
hybridCache is designed to be fully compatible with existing
DRAM systems. By utilizing block-based access with a size
of 64 bytes, hybridCache is tailored to prevent fragmentation
and minimize bandwidth wastage on transfers, aligning with
conventional architectures.

D. Comparison Units
To minimize bandwidth wastage from loading vertices that

will ultimately be discarded, AceMiner incorporates a com-
parison unit with the column decoder of the in-DRAM cache
bank. Because this unit directly uses cache line values read
from bank, it is placed at the column decoder output. As
shown in Fig. 7, this unit is equipped with a comparator suite
designed to compare vertex ID data with a threshold vertex ID
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obtained from the memory request. When the data satisfies the
symmetry breaking criteria, the comparison unit emits a signal
to the vault controller, halting any further unnecessary vertex
loads. Specifically, our unit is optimized to execute symmetry
breaking primarily for hot neighbor sets identified and selected
by hybridCache.

In AceMiner, integrating the comparison unit with the in-
DRAM cache banks, rather than across all DRAM banks, is
based on several considerations. While equipping each bank
with comparison units could theoretically enhance bandwidth,
such an expansion is not always practical or necessary. For
instance, in 3-MC mining problems, the top 10% of frequently
accessed neighbor sets account for nearly 44% of total ac-
cesses [7]. Therefore, the frequently accessed sets benefit most
from the comparison unit. This consideration aligns with the
function of hybridCache, which is designed to store such hot
sets. Furthermore, another consideration in our design is the
area cost associated with each comparison unit, which includes
multiple comparator circuits. By selectively integrating these
units with the in-DRAM cache banks, we achieve an efficient
balance between lightweight and system effectiveness.

IV. METHODOLOGY

A. System Configuration
We utilize the cycle-accurate Ramulator simulator [30] to

evaluate the performance of AceMiner. Ramulator, a DRAM
simulator, has been cross-validated with real DRAM devices
and is widely used in prior research for PIM evaluations [6],
[26]. Table I presents the detailed system configurations.
Additionally, we use CACTI 6.5 [31] to model the area and
power consumption.

B. Benchmarks and Workloads
To evaluate AceMiner, we use four mining patterns: 3

Clique Finding (3CF), 4 Clique Finding (4CF), 5 Clique
Finding (5CF), and 3 Motif Counting (3MC). Additionally, we
utilize six real-world graph datasets, as detailed in Table II.
Both the mining patterns and graph datasets selected are
consistent with previous works [6], [7], [12].

TABLE I
SIMULATED SYSTEM CONFIGURATIONS.

Parameter Value

H
os

t
Si

de

CPU Cores 4 Cores, OoO, 2GHz, 192-entry ROB

Private L1 Cache Separated 32KB I/D-Cache per core, 8-ways,
2-cycle hit latency, 8-entry MSHR, 64B line size

Private L2 Cache 256KB/core, 8-ways, 12-cycle hit latency,
12-entry MSHR, 64B line size

Shared L3 Cache shared 2MB/core, 32-ways, 35-cycle hit latency,
32-entry MSHR, 64B line size

PI
M

sid
e

PIM System 4⇥4 HMC v2.1 [24] stacks in mesh, 32 vaults per stack
4GB and 256 banks per stack, 64GB in total

PIM Processing Unit 500Mhz, single-issue, in-order
L1 I/D cache: 32kB, 4-way, 64B line size, LRU

DRAM Parameters
tCAS=tRCD=tRP=22ns

5.0 pJ/bit RD/WR, 535.8pJ ACT/PRE
4.0 pJ/bit inter-stack net, 0.4pJ/bit Intra-stack net

hybridCache
in-DRAM cache: 256MB per stack,

16-way, 64B line size, Advanced Replacement Policy
TAG cache(SRAM): 16kB, 4-way, 64B line size, LRU

TABLE II
GRAPH DATASETS USED FOR EVALUATION.

Graph #Vtx #Edge Size

P2P(PP) 10.9K 40.0K 620K

Astro(AS) 18.8K 198K 5.3M

MiCo(MI) 100K 1.08M 18MB

com-Youtube(YT) 1.13M 2.99M 57MB

cit-Patents(PA) 3.77M 16.52M 332MB

soc-LiveJournal1(LJ) 4.85M 43.11M 1.2G

V. RESULTS

A. Overall Performance

We compare AceMiner with state-of-the-art PIM frame-
works for GPM accelerating, NDMiner [6] and DIMMin-
ing [7]. The main differences between the three frameworks
are outlined in Table III. Notably, both NDMiner and DIM-
Mining utilize specially designed PIM processing units tai-
lored for GPM algorithms, while AceMiner employs tradi-
tional general purpose in-order cores—offering greater prac-
tical applicability. For comparison optimization, AceMiner’s
hardware comparison unit design shows more simplicity and
efficiency with the help of hybridCache than NDMiner, as
described in Sec. III-D. DIMMining’s software comparison
optimization approach places an additional burden on pro-
grammers and also introduces additional storage demands.

Fig. 8 shows the performance comparison under these 3
architecture with all results normalized to the execution time
of NDMiner. On average, AceMiner achieves a 40.2% speedup
over NDMiner and a 13.3% speedup over DIMMining. This
performance enhancement is even more pronounced when
mining complex patterns in large datasets. The performance
improvements in AceMiner are largely attributed to exploiting
the locality in set reuse and reducing data movement with
the innovative hybridCache. In contrast, NDMiner and DIM-
Mining are constrained by smaller caches unable to unlock

TABLE III
GPM ACCELERATING WITH PIM FRAMEWORKS.

Comparison OPT PIM logic PIM cache
NDMiner hardware dedicated small cache

DIMMining software dedicated small cache
AceMiner hardware general hybridCache
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Fig. 8. Performance comparison of state-of-the-art frameworks showing the effectiveness of AceMiner.
such benefits. Additionally, the comparison unit in AceMiner
further enhances performance. Unlike NDMiner, which dis-
tributes comparison units across all DRAM banks, AceMiner
targets placement only within the hybridCache for “hot” neigh-
bor sets. This targeted approach yields significant area savings
versus NDMiner’s distributed approach. And compared to
DIMMining’s pre-comparison optimization through software,
AceMiner introduces minimal storage overhead while avoiding
programming intricacies. In summary, AceMiner presents a
practical alternative to specialized PIM frameworks through
localized caching and judicious comparison unit placement,
achieving state-of-the-art GPM acceleration.

B. Performance Analysis
To analyze the performance of AceMiner in detail, we eval-

uate the impact of integrating hybridCache and comparison
units in AceMiner. We introduce AceMiner-base, excluding
both hybridCache and comparison units, while keeping other
configurations the same as AceMiner. We also implement
AceMiner-hybridCache, a simplified version of AceMiner,
which integrates only hybridCache. The execution time of
each configuration is normalized to the AceMiner-base. Fig. 9
shows that, on average, AceMiner-hybridCache outperforms
AceMiner-base by a factor of 10.5. Furthermore, AceMiner,
which combines both hybridCache and comparison units, out-
performs AceMiner-base by an average factor of 21.6, clearly
highlighting the combined efficacy of these components.

The advanced performance of hybridCache primarily comes
from the enhanced locality and reduced data movement. For
locality improvement, the hybridCache can leverage the lo-
cality of the set reuse in GPM algorithms, especially for the
complex pattern with deeper loops and larger dataset sizes. As
depicted in Fig. 10(a), we measured the cache miss ratio for
four patterns using the largest dataset, LJ. The cache miss ratio
in AceMiner-base, observed from the small cache embedded
in PIM, is extremely high, averaging 72.6%. In contrast,
AceMiner-hybridCache significantly reduces the hybridCache
miss ratio to an average of 15.8%. The improvement comes
from the large size of the in-DRAM cache design with
our access latency and replacement optimization. Regarding
data movement reduction of inter and intra PIM, Fig. 10(b)
illustrates the data movement in AceMiner-hybridCache, nor-
malized to AceMiner-base, using the LJ dataset. The results
indicate that AceMiner-hybridCache reduces data movement
by 75.7% compared to AceMiner-base. This reduction is
achieved through the caching of remote access data locally.

Based on the results of AceMiner in Fig. 9, it is de-
duced that with the help of a comparison unit, AceMiner

TABLE IV
DESIGN OVERHEAD COMPARISON.

NDMiner DIMMining AceMiner
Area 0.64 mm2 0.38 mm2 0.11 mm2

Power 51.59 mW 105.82 mW 10.85 mW

can get 1.9⇥ performance improvement over AceMiner-base.
This improvement primarily comes from avoiding unnecessary
loads through comparison units. The comparison unit shows
effectiveness, especially for the complex pattern with more
symmetry breaking constraints. This optimization could also
significantly enhance performance for graphs with a larger
memory footprint.

C. Energy Analysis
Fig. 11 shows the energy consumption comparison of

AceMiner normalized to NDMiner using small, medium and
large datasets. Results demonstrate that AceMiner reduces
energy consumption by 22.4% on average compared to ND-
Miner. NDMiner introduces a vertex reordering technique to
improve data locality. However, the reordering process itself
uses additional energy. Furthermore, the distributed organiza-
tion of comparison units in NDMiner induces more energy
consumption than the approach used in AceMiner. A direct
comparison of energy usage between AceMiner and DIM-
Mining is not possible due to a lack of available open-source
implementations. Nevertheless, DIMMining incorporates com-
plex PIM logic design which likely increases energy demands.
Additionally, DIMMining does not optimize for neighbor set
reuse, which AceMiner leverages to be more efficient. We
estimate that AceMiner reduces energy consumption to a
greater extent than DIMMining as a result.

D. Overhead Analysis
We present the design overhead of AceMiner in Table IV.

The area overhead of AceMiner primarily originates from
the TAG cache and the comparison units. Each PIM module
requires 0.092 mm2 for the TAG cache and only 0.015 mm2

for the comparison units. The total area overhead of AceMiner
is considerably less than that of NDMiner and DIMMining.
AceMiner contributes an additional overhead of 0.11% of
a DRAM chip, which typically measures around 100 mm2.
Furthermore, the power overhead of AceMiner is 10.85 mW,
which is considerably lower compared with the more complex
circuit requirements of NDMiner and DIMMining.

VI. CONCLUSIONS

Irregular memory accesses in GPM applications make them
particularly well-suited for acceleration using PIM. However,
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Fig. 9. Performance comparison of AceMiner configurations showing the effectiveness of proposed optimizations.
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the challenge arises when the large graph sizes of GPM
applications encounter the limited SRAM cache capacity in
current PIM architectures. This mismatch hinders the full
utilization of data locality and minimization of data movement.
In this work, we introduce AceMiner, a framework for accel-
erating GPM applications using PIM. Central to AceMiner
is hybridCache, an in-DRAM cache system optimized for
PIM. We have enhanced hybridCache by improving access
latency and implementing an advanced replacement policy.
Furthermore, we have integrated comparison units with hy-
bridCache to manage the substantial overhead associated with
symmetry breaking effectively. Our extensive evaluations show
that AceMiner consistently surpasses state-of-the-art solutions
while maintaining low overhead, demonstrating significant
advancement in performance.
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