
Premier: A Concurrency-Aware Pseudo-Partitioning
Framework for Shared Last-Level Cache

Xiaoyang Lu, Rujia Wang, Xian-He Sun
Department of Compute Science, Illinois Institute of Technology, Chicago, IL

xlu40@hawk.iit.edu, rwang67@iit.edu, sun@iit.edu

Abstract—As the number of on-chip cores and application de-
mands increase, efficient management of shared cache resources
becomes imperative. Cache partitioning techniques have been
studied for decades to reduce interference between applications in
a shared cache and provide performance and fairness guarantees.
However, there are few studies on how concurrent memory
accesses affect the effectiveness of partitioning. When concurrent
memory requests exist, cache miss does not reflect concurrency
overlapping well. In this work, we first introduce pure misses
per kilo instructions (PMPKI), a metric that quantifies the
cache efficiency considering concurrent access activities. Then
we propose Premier, a dynamically adaptive concurrency-aware
cache pseudo-partitioning framework. Premier provides insertion
and promotion policies based on PMPKI curves to achieve the
benefits of cache partitioning. Finally, our evaluation of various
workloads shows that Premier outperforms state-of-the-art cache
partitioning schemes in terms of performance and fairness.
In an 8-core system, Premier achieves 15.45% higher system
performance and 10.91% better fairness than the UCP scheme.

I. INTRODUCTION

In most multi-core systems, applications running on differ-
ent cores share the last-level cache (LLC). As the number of
cores on the chip increases, applications increasingly compete
for the shared cache, which is detrimental to the overall system
performance. As a result, it is critical to manage the shared
cache to achieve high performance and fairness. Cache parti-
tioning is an effective method to manage cache capacity per
core and enforce access isolation between different workloads,
thus mitigating contention and interference in shared LLCs.

Due to historical reasons, conventional cache partitioning
schemes are designed to reduce cache misses, which may or
may not be the best for concurrent cache memory accesses.
Data access concurrency and overlapping are common in
modern computing systems. In such cases, some cache misses
occur concurrently with other hits (hit-miss overlapping), and
the penalty of the misses could be reduced or hidden. As a re-
sult, classifying miss types may lead to a better understanding
of miss penalty and a better optimized system performance.

In this work, we first introduce the concept and a formal
definition of Pure Misses Per Kilo Instructions (PMPKI). Un-
like the classical misses per kilo instructions metric (MPKI),
which only focuses on data locality, PMPKI takes into account
overlapping in concurrent memory systems and reflects the
number of pure misses (§II-A) that hurt the performance
most. Next, we present Premier, a concurrency-aware shared
cache management framework that takes both data locality and
concurrency into account. Based on PMPKI curves, Premier

provides insertion and promotion policies for each applica-
tion to achieve efficient pseudo-partitioning. Our experimental
results show that Premier outperforms state-of-the-art cache
partitioning schemes in both performance and fairness.

II. BACKGROUND AND MOTIVATION

A. Concurrent Cache Accesses

Concurrent data accesses provide overlapping [10], which
helps hide data access latency. At the same cache level, when
the cache miss-access cycles overlap with the hit-access cycles,
the cache miss penalty can be hidden because hit accesses
continue to feed data to the processor [4]. Note that since each
core has its own workload, memory accesses from different
cores are not related. Only the overlapping of accesses from
the same core is considered meaningful.

The term Pure Miss was introduced to identify the misses
that are more harmful to performance when considering data
access concurrency. In multi-core systems, pure miss in the
shared cache is the miss access that contains at least one
miss-access cycle, which does not have any hit access activity
from the same core to overlap. Reducing the number of pure
misses has proven to be an effective way to improve the overall
memory system performance [5].

B. Cache Partitioning

Strict partitioning: Strict partitioning schemes in set-
associative caches are typically implemented through way-
partitioning, which provides each application with exclusive
ownership of a specific partition. Qureshi and Patt proposed
utility-based cache partitioning (UCP) [8]. UCP uses miss
curves to determine partitioning decisions, which capture the
core’s misses for each possible partition size. Subramanian et
al. proposed ASM cache partitioning [9]. ASM partitions the
shared cache to achieve minimizing slowdown. However, to
estimate the slowdown of the applications, the scheduler of the
memory controller needs to be modified, which may negatively
impact performance. Although strict partitioning schemes are
straightforward, they may lead to low cache utilization [7].
Pseudo-partitioning: Pseudo-partitioning techniques implic-
itly partition the cache by managing the cache insertion and
promotion policies. Xie and Loh proposed PIPP [11], which
uses UCP’s monitoring circuit to determine the insertion points
for all new incoming lines from each core. PIPP only promotes
the cache hit line by a single position with a certain probability
when a cache line is hit. Kaseridis et al. proposed MCFQ [3],

(a) 605.mcf (b) 649.fotonik3d

Fig. 1: MPKI and CPI for SPEC CPU2017 benchmarks as
the cache size is varied. (The x-axis is the number of ways
allocated from a 16-way 2MB L3 cache to this workload.)

an MLP-aware pseudo-partitioning scheme. However, MCFQ
does not realize that the miss penalty can be hidden when miss
accesses overlap with hit accesses. Therefore, MCFQ analyzes
concurrent memory accesses in a coarse-grained manner.

C. Motivation

Current cache partitioning schemes mainly aim at reducing
the absolute number of cache misses and assume there is
a high correlation between miss reduction and performance
improvement [8]. Figure 1 demonstrates when concurrent
memory requests exist, the correlation between the saved
misses by additional cache capacity and the overall system
performance is weak. For 605.mcf, the number of misses
tends to stabilize when the way is allocated exceeds 6.
However, as the allocated cache increases, the CPI of the
605.mcf continues to decrease. For 649.fotonik3d, as
the number of allocated ways increases from 1 to 5, the
number of misses is significantly decreased. However, the CPI
of 649.fotonik3d stays constant from 1 way to 5 ways.
Therefore, by monitoring the missing curves, cache partition-
ing schemes with the goal of reducing the total number of
misses cannot ensure the highest performance gains. We are
motivated to design a new cache partitioning scheme with
a different performance optimization goal by considering the
cache misses that harm the performance the most.

III. PURE MISSES PER KILO INSTRUCTIONS (PMPKI)

A. Definition and Measurement

We first introduce PMPKI to quantify the cache efficiency
of a program in concurrent access activities. Different from
the definition of MPKI, which relies on the ratio of miss
accesses to evaluate the cache performance, PMPKI focuses
on quantifying the ratio of pure misses (§II-A). PMPKI is
definded as the number of pure misses per kilo instructions
over a given time interval:

Pure Misses Per Kilo Instructions = 1000×
Num. of Pure Misses

Num. of Total Instructions

B. Accuracy of PMPKI Metric

To verify the correctness of the PMPKI metric, we first
measure the L3 PMPKI, L3 MPKI, and CPI for 20 evaluated
workloads from SPEC CPU 2017 benchmark suite [2] in
single-core configurations as the L3 cache size is varied.
Then for each workload, we show the correlation (r) of
PMPKI-CPI and MPKI-CPI. Figure 2 indicates that compare

Fig. 2: Correlation coefficient analysis.

to MPKI, PMPKI shows a much higher positive correlation
with CPI. For all workloads, the majority of r(PMPKI, CPI)
are more than 0.99. The geometric mean of r(PMPKI, CPI)s
is around 0.99, which is much larger than the geometric mean
of r(MPKI, CPI)s. The strong correlation between PMPKI
and CPI shows that PMPKI has advantages in capturing
the concurrency/locality combined characteristics of modern
memory systems.

C. Classify Workloads with PMPKI

The PMPKI curves also capture the sensitivity of the
application performance with different cache sizes. We can
classify workloads into different categories by directly moni-
toring the runtime PMPKI. Cache-insensitive applications are
characterized by the fact that their PMPKI hardly changes
as the cache size increases. The PMPKI of cache-sensitive
applications continues to decrease as the cache size increases.
Cache-fitting applications are also sensitive to allocated cache
size. These applications benefit from the additional cache
capacity until they are allocated enough cache space to fit their
working sets. An increase in cache resources beyond their ideal
capacity hardly further reduces pure misses.

IV. PREMIER: A CONCURRENCY-AWARE
PSEUDO-PARTITION FRAMEWORK

A. Design Overview

Core 0

I-Cache D-Cache
L2

Cache

Partitioning Algorithm &
Pseudo-Partitioning

Policies

Shared
L3

Cache

Main
Memory

PMON

PMON
Core N

I-Cache D-Cache
L2

Cache

…

MHB
SET A
SET B
SET C

LRUMRU

ATD : tag entry in the ATD

: hit counter for a
recency position

Fig. 3: Block diagram of Premier.

Figure 3 shows the overview of the Premier framework. The
grey shaded modules are designs we added to a typical multi-
core architecture. First, each core has a PMPKI monitoring
circuit (PMON) to estimate the number of pure misses for
each core when allocated in all possible cache partition sizes
(in terms of cache ways) without interfering other running
applications (§IV-B). Second, the applications are classified
as cache-insensitive, cache-sensitive, or cache-fitting (§IV-C).
Then, the partitioning algorithm utilizes the PMPKI curves

estimated by PMONs to determine the cache size allocated
to each core to minimize the number of pure misses in the
system (§IV-D). Finally, Premier uses the pseudo-partitioning
technique to sidestep the limitation of strict partitioning. At the
end of each period (16K LLC misses), based on the category
of each application provided by PMONs and the partitioning
plan provided by the partitioning algorithm, Premier dynam-
ically decides the insertion policy for cache misses and the
promotion policy for hit accesses (§IV-E).

B. PMPKI Monitor (PMON)
To estimate the PMPKI curve when different numbers of

ways are assigned to applications, an auxiliary tag directory
(ATD) [8], [11] is assigned to each core, tracking the state of
the cache if the core has exclusive access to the shared cache.
The ATD has the same associativity as the main tag directory
of the shared cache. Based on the stack property, a hit access
at the i-th most recent position in the LRU stack indicates that
the hit will be converted to a miss in the cache with less than
i ways (for the same set count). Hit counters are assigned to
each recency position ranging from MRU to LRU. By counting
the number of hits corresponding to the LRU stack positions,
a single ATD can provide the hit and miss information for
all possible partition sizes at once. Each ATD is also attached
with a miss holding buffer (MHB) which has the same entries
of MSHR, to simulate the functions of MSHR. At the end of
each period, PMON further estimates the number of pure miss
accesses based on the hit/miss information provided by ATD,
MHB, and the cycle information of each access.

C. Application Classification
Assuming there is an N -way set-associative shared cache,

to reduce the computational complexity, Premier classifies
applications based on the PMPKI value when the application
is assigned only 1 cache way, N − 1 ways, and N ways
(noted as PMPKI1, PMPKIN-1 and PMPKIN respectively). If
the ratio of PMPKIN and PMPKI1 of an application is greater
than a threshold Tinsen, we consider the application is cache-
insensitive. If an application is not cache-insensitive, and the
difference between PMPKIN-1 and PMPKIN is greater than
a threshold Tsen, it is characterized as cache-sensitive. The
remaining applications are classified as cache-fitting. Based on
the analysis of the SPEC CPU 2017 benchmarks we evaluated,
Tinsen is set to 0.95 and Tsen is set to 0.1.

D. Partitioning Algorithm
Once PMON has completed the computation of the PMPKI

curve for each application, Premier uses the PMPKI curves
to feed into the Lookahead algorithm [8]. Due to the high
correlation between PMPKI and performance, the lookahead
algorithm is used to calculate the ideal partition cache sizes
for each application online, intending to minimize the total
number of pure misses incurred by all applications in the
shared cache. The partitioning plan provided by the lookahead
algorithm for k cores can be denoted as Ω={ω0, ω1, ... , ωk-1}
and

∑k-1
i=0 ωi = N , where N is the associativity of the shared

cache.

Core 0 Core 1 Core 2 Core 3

MRU Position
(to keep)

LRU Position
(to evict)

Fig. 4: The insertion positions for four applications.

TABLE I: Simulated system configurations

Processor 2 to 8 cores, 4GHz, 8-issue width, 256-entry ROB

L1 Cache private, split 32KB I/D-cache/core, 64B line,
8-way, 4-cycle latency, 8-entry MSHR, LRU

L2 Cache private, 256KB/core, 64B line. 8-way,
10-cycle latency, 32-entry MSHR, LRU

L3 Cache
(LLC)

shared, 2MB/core, 64B line, 16-way,
20-cycle latency, 64-entry MSHR

DRAM 8GB 2 channels, 64-bit channel, 2400MT/s,
tRP=15ns, tRCD=15ns, tCAS=12.5ns

E. Pseudo-Partitioning Policies

Insertion policy: Premier first assigns priorities to applica-
tions based on how sensitive they are to cache size. Premier as-
signs the lowest priority to cache-insensitive applications and
provides the highest priority to cache-sensitive applications.
If there are multiple applications in the same category, the
priority between these applications is determined according to
the PMPKI1 of each application. Then, Premier combines the
priority of the applications with the partition sizes calculated
by the lookahead algorithm to determine the insertion point
for each application. Figure 4 illustrates the insertion positions
for a 16-way cache shared between four cores. Suppose the
target partitioning plan is Ω={7, 5, 3, 1}; core0 has the
highest priority, followed by core1 and core2, and core3 has
the lowest priority. Premier only inserts new cache blocks
near MRU positions for higher priority applications to ensure
that higher priority applications get the cache capacity they
require and encourage them to steal cache capacity from
other applications. New cache blocks from lower priority
applications are inserted close to the LRU position.
Hit-promotion policy: In order to improve the data locality,
for cache-sensitive and cache-fitting applications, if a cache
block receives a hit, Premier moves the cache block to the
MRU position in the LRU stack. Otherwise, Premier only
promotes the cache block to its insertion position.

V. EXPERIMENTAL METHODOLOGY

We use the ChampSim [1] simulator to evaluate Premier in
multi-core systems. Table I describes the configuration used
in our study. We select benchmarks randomly from the SPEC
CPU 2017 benchmarks [2] to generate mixed-copy workloads
as shown in Table II. We warm the cache for 50M instructions
and measure the behavior of the next 200M instructions.

For each workload we evaluate the throughput (sum of IPCs,∑
IPCi) and fairness (harmonic mean of normalized IPCs,

N/
∑

(IPCi,alone/IPCi), where IPCi,alone is the IPC when
the application executes in isolation under the ownership of all
cache resources [6]). We select UCP [8] as the baseline for
comparison. We further compare Premier against three state-
of-the-art cache partitioning schemes: MCFQ [3], PIPP [11],
and ASM [9].

TABLE II: Evaluated workloads

2-core 4-core 8-core
MIX 1: 603,623 MIX 1: 605,621,627,654 MIX 1: 607,619,620,

623,625,628,638,657MIX 2: 603,654 MIX 2: 607,619,628,620
MIX 3: 605,607 MIX 3: 621,605,602,603 MIX 2: 605,621,627,

649,654,620,623,628MIX 4: 605,627 MIX 4: 619,623,602,603
MIX 5: 607,619 MIX 5: 605,621,654,623 MIX 3: 605,621,654,

607,619,623,625,628MIX 6: 619,623 MIX 6: 605,621,619,623
MIX 7: 621,627 MIX 7: 621,619,623,620 MIX 4: 605,627,649,

654,619,628,602,603MIX 8: 623,649 MIX 8: 621,649,623,603
MIX 9: 627,654 MIX 9: 621,619,623,603 MIX 5: 605,654,607,

619,620,657,602,603MIX 10: 649,654 MIX 10: 605,623,602,603

Fig. 5: Throughput speedup over UCP for 2-core workloads.

VI. EXPERIMENTAL RESULTS

A. Performance Evaluation

Figure 5 shows that on the 2-core system, Premier outper-
forms existing schemes across the board, with a geometric
mean speedup of 8.50% over UCP. For 4-core mixed work-
loads, Figure 6 shows Premier offers a speedup of 9.17%
on average, an improvement of 7.62% over MCFQ, 4.95%
over PIPP, 7.49% over ASM. Figure 7 shows that the Premier
performance advantage comes from the fact that Premier
significantly reduces LLC pure misses compared to the state-
of-the-art schemes. Premier yields 4.13%, 3.32%, 2.09%, and
2.97% average pure miss reduction over UCP, MCFQ, PIPP,
and ASM. Figure 8 shows that the advantage of Premier
further increases on an 8-core system. Premier provides a
15.45% higher geometric mean throughput over the baseline
UCP, 10.79% over MCFQ, 6.54% over PIPP, and 15.07% over
ASM. When LLC cache size increases and the contention
(core number) increases, we observe that Premier has a better
opportunity to improve performance.

B. Fairness Evaluation

Figure 9 summarizes the fairness comparison as we in-
crease the number of cores. Premier provides higher fairness
than every state-of-the-art cache partitioning scheme in all
configurations. Concurrency increases as the number of cores
increases, and since Premier is concurrency-aware, the fairness
advantage of Premier becomes greater. In the 8-core configu-
ration, Premier achieves a fairness improvement over UCP by
10.91% on average.

VII. CONCLUSIONS

In this paper, we propose pure miss per kilo instructions
(PMPKI), a metric that considers both data locality and con-
currency. We present Premier, a concurrency-aware pseudo-
partitioning framework based on monitoring the PMPKI of
each application to provide the benefit of dynamic capacity
allocation, adaptive insertion, and interference mitigation. Our
evaluations across a wide variety of workloads and system

Fig. 6: Throughput speedup over UCP for 4-core workloads.

Fig. 7: Pure miss reduction over UCP for 4-core workloads.

Fig. 8: Throughput speedup over UCP for 8-core workloads.

Fig. 9: Fairness improvement over UCP for 2, 4, 8 cores.
configurations show that Premier is superior to the state-of-
the-art cache partitioning schemes in terms of performance
and fairness.

ACKNOWLEDGMENT

This research is supported in part by the National Science
Foundation under Grants CCF-2029014, CCF-2008907, CNS-
1730488, and by the NSF supported Chameleon testbed facil-
ity.

REFERENCES

[1] The champsim simulator. https://github.com/ChampSim/ChampSim.
[2] Spec cpu2017 benchmark suite. http://www.spec.org/cpu2017/.
[3] D. Kaseridis, M. F. Iqbal, and L. K. John. Cache friendliness-aware

management of shared last-level caches for high performance multi-core
systems. IEEE transactions on computers, 63(4):874–887, 2013.

[4] J. Liu, P. Espina, and X.-H. Sun. A study on modeling and optimization
of memory systems. Journal of Computer Science and Technology,
36(1):71–89, 2021.

[5] X. Lu, R. Wang, and X.-H. Sun. Apac: An accurate and adaptive prefetch
framework with concurrent memory access analysis. In ICCD-38, 2020.

[6] K. Luo, J. Gummaraju, and M. Franklin. Balancing thoughput and
fairness in smt processors. In ISPASS’01, 2001.

[7] S. Mittal. A survey of techniques for cache partitioning in multicore
processors. ACM Computing Surveys (CSUR), 50(2):1–39, 2017.

[8] M. K. Qureshi and Y. N. Patt. Utility-based cache partitioning: A
low-overhead, high-performance, runtime mechanism to partition shared
caches. In MICRO-39, 2006.

[9] L. Subramanian, V. Seshadri, A. Ghosh, S. Khan, and O. Mutlu. The
application slowdown model: Quantifying and controlling the impact of
inter-application interference at shared caches and main memory. In
MICRO-48, 2015.

[10] X.-H. Sun and D. Wang. Concurrent average memory access time.
Computer, 47(5):74–80, 2013.

[11] Y. Xie and G. H. Loh. Pipp: Promotion/insertion pseudo-partitioning of
multi-core shared caches. 2009.

