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Abstract—Cache management is a critical aspect of computer
architecture, encompassing techniques such as cache replace-
ment, bypassing, and prefetching. Existing research has often fo-
cused on individual techniques, overlooking the potential benefits
of joint optimization. Moreover, many of these approaches rely
on static and intuition-driven policies, limiting their performance
under complex and dynamic workloads. To address these chal-
lenges, this paper introduces CHROME, a novel concurrency-
aware cache management framework. CHROME takes a holistic
approach by seamlessly integrating intelligent cache replacement
and bypassing with pattern-based prefetching. By leveraging
online reinforcement learning, CHROME dynamically adapts
cache decisions based on multiple program features and applies a
reward for each decision that considers the accuracy of the action
and the system-level feedback information. Our performance
evaluation demonstrates that CHROME outperforms current
state-of-the-art schemes, exhibiting significant improvements in
cache management. Notably, CHROME achieves a remarkable
performance boost of up to 13.7% over the traditional LRU
method in multi-core systems with only modest overhead.

I. INTRODUCTION

With the advancement of large-scale, data-intensive applica-
tions, optimizing the performance of modern memory systems
has become crucial for achieving efficient execution. Cache
hierarchy, designed to bridge the performance gap between
the processor and the main memory, plays a pivotal role in
memory systems [21], [25], [33], [43], [53]. With the esca-
lating performance demands and an increasing number of on-
chip cores, cache hierarchy in modern processors continues to
grow both in depth and capacity [49]. Obviously, unrestricted
growth of cache resources is unfeasible due to area and power
budget constraints [13], [36]. Consequently, computer archi-
tects primarily rely on efficient cache management strategies.

There are three primary cache management techniques to
enhance cache utilization: cache replacement, bypassing, and
prefetching. Cache replacement policies (e.g., [4], [13], [21],
[23], [31], [35], [41], [43], [44], [55], [58]) determine the
eviction of cache blocks to accommodate new data, typically
prioritizing swift eviction of blocks with large predicted reuse
distance. Cache bypassing techniques (e.g., [11], [30], [36])
make decisions on whether to cache incoming blocks or have
them bypass the cache, thus preventing the cache from being
“polluted” with infrequently reused data. Hardware prefetchers
(e.g., [6], [7], [14], [15], [33], [38], [48]) learn from complex

memory access patterns and proactively fetch data most likely
required by future accesses to reduce latency.

Cache replacement, bypassing, and prefetching collectively
constitute the cornerstone of effective cache management,
significantly contributing to the overall system performance.
However, current studies often examine cache replacement,
bypassing, and prefetching in isolation, overlooking the po-
tential benefits that could arise from a joint optimization
strategy. For example, demand accesses and prefetching ac-
cesses frequently exhibit distinct behaviors, necessitating a
replacement policy that is cognizant of prefetching dynamics.
Additionally, considering that a significant portion of cache
blocks experience only a single access, an effective method
capable of predicting and bypassing these blocks could lead
to significantly improved performance due to reduced cache
pollution. Operating in isolation, one might fail to recognize
the complementary nature of these techniques, missing the
opportunities for more efficient utilization of cache resources.
It is advantageous to integrate cache replacement, bypassing,
and prefetching as a cohesive approach rather than treating
them as separate techniques.

Traditional cache management schemes are largely guided
by human intuition, which is grounded in high-level assump-
tions about application behaviors and memory access patterns.
However true, these assumptions may not always hold, leading
to potentially sub-optimal policies for complex workloads and
configurations. The diversity of modern workloads exacer-
bates the situation, making prediction and optimization of
cache performance increasingly difficult. There is a need for
automated techniques that can accurately predict and adapt
to access patterns across various workloads. Reinforcement
learning provides a promising solution, offering the potential
for developing an intelligent cache management framework
that learns from interactions and adapts cache decisions in
response to different workloads and configurations.

In this paper, we introduce CHROME, a concurrency-aware
holistic last-level cache management framework that leverages
online reinforcement learning. We model cache management
as a reinforcement learning problem, where the agent learns
by interacting with its environment, with each action yield-
ing a specific reward. The ultimate goal of the agent is to
maximize cumulative rewards, thus driving the continuous
and autonomous optimization of its policies and actions [52].
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Fig. 1: Comparison of performance improvement with SOTA
cache management schemes over LRU on a 16-core system
(using homogeneous workload mixes).

CHROME has several unique features:
1) CHROME is a holistic cache management framework that

integrates cache bypassing and replacement policies with
pattern-based prefetching. The framework provides the
opportunity for joint optimization, leveraging the comple-
mentary strengths of cache replacement, bypassing, and
prefetching to minimize interference between separate
operations that could lead to competing decisions.

2) CHROME operates as a reinforcement learning agent,
conducting online learning based on predefined rewards
and performance objectives. This unique design elimi-
nates the necessity for offline training, thus avoiding po-
tential constraints imposed by fixed policies that struggle
to adapt to dynamic workloads and configurations.

3) CHROME observes multiple program features, including
control-flow and data-access characteristics, and repre-
sents the last-level cache (LLC) access as a state vec-
tor. By utilizing multiple program features, CHROME
significantly enhances its capacity to accurately capture
the intricate memory access behavior of applications,
ultimately boosting the efficacy of its learning process.

4) CHROME defines a reward for each action that considers
the system-level feedback information. Both data locality
and data access concurrency of the system are presented
to CHROME to better evaluate the impact of its decisions
through reinforcement learning.

5) CHROME is lightweight requiring only a modest hard-
ware implementation overhead (with the smallest storage
overhead among all state-of-the-art cache management
schemes we consider), thus clearing the hurdles for its
practical application.

We evaluate CHROME against four state-of-the-art (SOTA)
cache management schemes, including Hawkeye [21], Glider
[44], Mockingjay [43], and CARE [35], across a variety of
memory-intensive workloads. Figure 1 shows that CHROME
outperforms these schemes when running multi-programmed
workloads on a 16-core system. Overall, CHROME consis-
tently improves performance in the system with prefetching
across various SPEC CPU [46], [47] and GAP [3] workloads.
On average, CHROME improves performance by 13.7% over
the classic Least Recently Used (LRU) baseline. CHROME
outperforms Hawkeye, Glider, Mockingjay, and CARE by
6.6%, 6.9%, 4.6%, and 2.6%, respectively.

The rest of the paper is organized as follows. We present the

background in Section II. In Section III, we identify the major
issues in current cache management schemes, which motivated
the design of CHROME. We formulate the cache management
as a reinforcement learning problem in Section IV, and present
the design of CHROME in Section V. CHROME is a self-
optimizing framework that can dynamically and autonomously
make cache management decisions at the LLC, utilizing
multiple program features and concurrency-aware system-
level information. Sections VI and VII present an extensive
performance evaluation study to demonstrate the adaptability
and scalability of CHROME. We discuss the related works in
Section VIII. Finally, we conclude the paper in Section IX.

II. BACKGROUND

A. Cache Management Schemes

Efficient use of the LLC can mitigate the ever-widening per-
formance gap between CPUs and memory. To ensure that the
cache retains useful blocks and minimizes cache misses, recent
cache management schemes [21], [42]–[44], [53], [55] draw
insights from historical access behavior to predict the future
behavior of incoming blocks, optimizing cache management
and improving overall system performance.

Hawkeye [21] emulates and learns from Belady’s OPT
policy [5] based on an extensive history of cache accesses
to predict the reuse characteristics of future accesses. It
formulates reuse prediction as a binary classification problem
and employs a PC-based predictor to determine whether an
incoming line will be cache-friendly or cache-averse. When
a cache miss occurs, any block that is predicted to be cache-
averse is selected for eviction. Glider [44] applies an offline
attention-based long short-term memory (LSTM) model to the
cache replacement problem. Data derived from Belady’s OPT
policy are used to train the LSTM model offline, which leads
to a simpler online model based on a support vector machine.
Following in the footsteps of Hawkeye, Mockingjay [43]
introduces holistic thinking to guide cache replacement and
bypassing decisions, particularly in the presence of prefetch-
ing. Rather than relying on binary predictions, Mockingjay
effectively emulates Belady’s OPT policy by basing its deci-
sions on multi-class reuse prediction. It estimates the reuse
distances for each program counter (PC) at a fine granularity,
leading to the quick eviction or bypassing of blocks predicted
to be reused furthest. CARE [35] stands out from other
reuse distance prediction-based schemes by considering both
data locality and concurrency in its cache insertion and hit-
promotion decisions. It not only aims to minimize cache
misses, but also works effectively to eliminate the costly ones.
In scalable systems with large numbers of concurrent memory
accesses, CARE demonstrates good scalability.

CHROME drew inspiration from these schemes, yet it
differs significantly as an integrated approach encompassing
cache replacement, bypassing, and prefetching, and as an
online reinforcement learning algorithm to cope with dynamic
workloads and varying system configurations.



B. Reinforcement Learning for Cache Management

Reinforcement learning (RL) [40], [52] is a machine learn-
ing technique that enables an agent to autonomously learn
to maximize the cumulative reward received over its life-
time through feedback from actions and experiences in an
interactive environment. The agent-environment interaction at
timestep t can be expressed as a tuple (St, At, Rt+1), where
the agent observes the state of the environment St and selects
an action At, after which the environment transitions its state
from St to St+1 and provides a numerical reward Rt+1 for the
agent. The goal of an agent is to find an optimal policy that can
maximize the total cumulative reward from the environment
in the long term. An agent must consider the long-term impact
of each action rather than focusing solely on the immediate
reward. The expected value of the cumulative reward that is
obtained when executing an action A in a given state S is
defined as the Q-value of the state-action pair Q(S,A) [54].

SARSA [40] is an on-policy algorithm for learning a
Markov decision process policy, where an agent interacts with
the environment and updates the Q-value depending on the
current state St, current action At, reward obtained Rt+1, next
state St+1, and next action At+1:
Q(St, At)← Q(St, At) + α[Rt+1 + γQ(St+1, At+1)−Q(St, At)].

The learning rate α determines the rate at which Q values are
updated. The discount factor γ determines how future rewards
are weighed against immediate rewards. When γ approaches 0,
the agent becomes more “opportunistic” and chooses actions
that favor the immediate rewards from the environment. As
γ increases, the agent becomes more “far-sighted” and strives
for higher rewards in the long term.

The RL framework has been successfully applied to system
optimization in areas such as memory scheduling [20], data
prefetching [6], [61], data placement in storage systems [45],
and HPC job scheduling [59], [60]. In this work, we posit
RL is suitable for holistic cache management for four main
reasons: 1) Adaptive online learning. The RL agent learns
online and optimizes its policy through interaction with the
environment. This continuous learning process equips the
agent with the ability to adapt to various configurations and
workloads with different access patterns. 2) Multiple features.
Accurate prediction of the memory access pattern of various
workloads is essential for effective cache management. The
use of multiple program features can improve prediction
accuracy, resulting in better performance [6], [25]. The state in
RL can be defined as a multi-dimensional vector of program
features. 3) Rewards from environment. The RL framework
learns autonomously based on feedback from the environment.
A well-designed reward structure for cache management tasks
allows RL agents to take appropriate actions by considering
both data locality and concurrency. 4) Acceptable overhead.
While machine learning techniques have been applied to cache
management [31], [44], [53], they often involve significant
overhead, including the cost of training, model space re-
quirements, and computational costs. An RL-based framework
eliminates offline training and requires a relatively small

model. The reward functions are simple to compute, and the
Q-values for state-action pairs can be stored in a lookup table
using only moderate computational resources for inference.

C. Concurrent Memory Access Model

In modern processors, concurrency is widely adopted to
mitigate the impact of long latency in accessing off-chip
main memory [8]. Modern high-performance processors with
advanced cache techniques, such as multi-port [62], pipelined
[1], and non-blocking [28], improve the throughput by en-
abling multiple data accesses to overlap in the same cycles,
resulting in increased concurrency of data accesses.

Concurrent Average Memory Access Time (C-AMAT) [50]
is a memory performance model that quantifies the average
real time spent for each memory access. C-AMAT quantifies
the combined impact of locality and concurrency of mem-
ory accesses, while taking into account the overlapping of
data accesses. C-AMAT can be calculated as the memory
active cycles divided by the number of memory accesses.
The memory active cycles are the number of cycles with
active memory accesses, excluding cycles without memory
references. These cycles are defined carefully to account for
overlap—only one cycle is counted when multiple memory
accesses occur concurrently in the same cycle at a memory
layer [32], [34], [35], [50], [57]. In a multi-core system, C-
AMAT tracks the memory active cycles and memory accesses
from each core. Both memory active cycles and the number
of memory accesses can be directly measured by Intel Per-
formance Monitoring Units (PMUs), which have already been
integrated into modern processors [17], [51]. As such, the C-
AMAT value can be monitored without imposing additional
overhead. The C-AMAT model can be generally applied to
any level of the memory hierarchy [37], providing an accurate
performance analysis of memory systems where concurrent
memory accesses are prevalent. In this work, we employ the
C-AMAT model to provide accurate system-level feedback
information, which turns out to be important for evaluating
the cache management decisions for reinforcement learning.

III. MOTIVATION

We identify two major issues in the current cache manage-
ment schemes: the lack of a holistic view of cache manage-
ment and the lack of adaptability for handling complex and
diverse workloads and system configurations.

A. Lack of Holistic View

Although state-of-the-art cache management schemes (such
as Hawkeye [21], Glider [44], and CARE [35]) strive to keep
cache blocks with better data locality in the LLC and minimize
thrashing caused by blocks with large reuse distances, they fo-
cus only on a specific aspect and thereby miss the opportunity
to integrate cache bypassing in the presence of prefetching.

As an example, Figure 2(a) depicts the percentage of LLC
evicted cache blocks that are not reused before eviction.
The target system is a 4-core system. We use the next-line
prefetcher at L1, stride prefetcher at L2 [14], [15], and Glider
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Fig. 2: Inspecting Unreused Blocks in LLC with Glider [44]:
(a) the fraction of blocks not reused before eviction, and (b)
the fraction of unused prefetched blocks among all blocks that
are not reused before eviction.

[44] as the LLC management scheme (see Section VI for
details). On average, 83.7% of evicted blocks in a 12MB
shared LLC are not reused before eviction. The unused evicted
blocks consist of those requested again in the future (28.0%,
depicted in gray on top) and those never requested again
(55.7%, in black at the bottom). Figure 2(b) shows that, on
average, 70.0% of the blocks not reused before eviction come
from prefetching.

Figure 2 underscores the need for a holistic cache man-
agement scheme for modern computing systems. On the one
hand, bypassing is effective for blocks accessed only once.
On the other hand, cache management needs to be aware
of prefetching, since retaining unnecessary prefetched blocks
may lead to the eviction of vital data. These considerations
call for a cache management framework that seamlessly inte-
grates replacement, bypassing, and prefetching. In response,
we introduce CHROME for a holistic approach to cache
management, which adeptly determines whether one should
cache or bypass incoming blocks, and selectively keep the
prefetched blocks, all at the same time.

B. Lack of Adaptability

Mockingjay [43] integrates cache replacement and bypass-
ing, and designs distinct policies for demand accesses and
prefetch accesses. However, the policies are statically designed
based on fixed assumptions that may not be reflective of the
dynamic nature of the workloads and thus can be ineffective
across a broad spectrum of workload demands and diverse
system configurations.

Figure 3 shows the performance of Hawkeye [21], Glider
[44], and Mockingjay [43] under two different multi-level
hardware data prefetching schemes using eight representative
workloads. When employing a next-line prefetcher at L1 and a
stride prefetcher at L2, Figure 3(a) shows that, although Mock-
ingjay integrates replacement, bypassing, and prefetching in
its design, it exhibits better performance with some workloads,
but not others (soplex, wrf, and cc-urand). The unstable
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Fig. 3: Comparing speedup over LRU on a 4-core system be-
tween: (a) using next-line prefetcher at L1 and stride prefetcher
at L2, and (b) using stride prefetcher at L1 and streamer
prefetcher at L2.

performance of Mockingjay across different workloads can
be attributed to the limitations of statically-designed policies
due to their lack of adaptability. Figure 3(b) depicts the
performance comparison of the same schemes under the same
workloads, but utilizing a stride prefetcher at L1 and a streamer
prefetcher at L2. Notably, Mockingjay underperforms Glider
across all workloads.

Figure 3 highlights the pivotal role of adaptive cache
management. First, the inconsistent performance of static
cache management policies across varied workloads accen-
tuates the need for adaptability. Second, the limitations of
static, intuition-driven policies are apparent when dealing with
diverse system configurations. An adaptive framework shall be
able to handle diverse workloads and system configurations.
CHROME is an online reinforcement learning-based cache
management framework, designed to ensure adaptability and
achieve robust and consistent performance for a wide range of
scenarios.

IV. CHROME: RL FORMULATION

We formulate cache management as an RL problem. In
particular, we design CHROME as an RL agent, with the
processor and the memory system acting as the environment.
The primary objective of CHROME is to enhance the overall
cache performance of the workloads running in a particular
system configuration and adjust cache management decisions
pertaining to the dynamic nature of the workloads. Each
time step corresponds to a new cache access, during which
CHROME observes multiple program features of the current
demand or prefetch access, the processor, and the memory
system, formulates them as a state, and subsequently makes
the decision on an action to bypass, replace, or promote a
cache block. In any case, the action works on the environment.
CHROME then receives a reward that considers the accuracy
of the action and system-level feedback information. This
process repeats itself continuously, enabling CHROME to
learn and adapt to the changing environment.



TABLE I: Program features considered for this study.

Control-flow Data-access Combination
PC Memory address PC + delta
Sequence of last 4 PCs Memory address delta PC + page number

Sequence of last 4 deltas PC + page offset
Page number
Page offset

A. State

For each cache access, CHROME utilizes observed program
features to select the most suitable action. Prior research has
highlighted program features that are closely correlated to
the reuse distance of blocks for cache optimization [6], [25],
[30], [43], [55]. In our study, we incorporate different types
of program features to characterize various workloads and
memory behaviors. This approach enables CHROME to gain
a more comprehensive understanding of diverse workloads
and memory behavior, offering multiple perspectives for more
effective learning.

We define the state as a multi-dimensional vector of program
features. Each program feature can either be a control-flow
feature (e.g., PC), a data-access feature (e.g., memory address,
page number, page offset), or a combination of these features
(e.g., bits from the PC and memory address can be composed
by hashing or concatenation). Table I lists the possible program
features. It is important to note that, although observing a
large number of features could theoretically improve learning,
it can also increase overhead and pose practical challenges.
Therefore, we consider the trade-off between performance and
overhead, and apply feature selection [27] to determine which
features to be included in the state vector. In this study, we
define the state as a 2-dimensional vector: St = (PCt,PNt).
PCt is the signature of program counter of the current memory
instruction. PC has been used extensively in earlier studies to
describe program behavior and has proven effective for cache
block reuse prediction [21], [25], [30], [43], [44], [55]. We
combine the PC and the hit/miss information into a hashed
PC signature, which allows CHROME to distinguish between
hit and miss accesses initiated at the same PC. PNt is the
physical page number of the current memory access. Due to
the similarity of access patterns at memory pages, the page
number represents the data-access feature that can complement
the control-flow feature (PC) and provide additional insight
into the program behavior.

Prefetching is an important technique for modern high-
performance processors [33], [48]. In the presence of prefetch-
ing, the behavior of demand and prefetch accesses can be quite
different. For instance, at a particular phase of a workload,
the reuse distance of the demand accesses might be large, and
therefore the corresponding data blocks should be bypassed.
However, the prediction from the prefetcher might be accurate,
and therefore the prefetched blocks should be inserted into the
cache in time [30], [56]. Inspired by [35], [58], to distinguish
between demand accesses generated and prefetch accesses
triggered by the same load instruction, we hash the PC
signature of each access with a is prefetch bit. As a result,
CHROME can learn the caching behavior of demand accesses

and prefetch accesses independently.
In a multi-core system, especially when the cores are execut-

ing different applications simultaneously, accesses generated
by the cores are mixed in the LLC, making it challenging to
observe the access behavior of each core accurately. Therefore,
in order to identify the accesses from different cores, we
further hash the PC signature with the core identifier to
produce a composite signature as a program feature ‘PC+core’
that CHROME needs to observe in multi-core systems.

B. Action

For each access, given a certain state, CHROME selects
an action to guide cache management decisions. Upon a
cache miss, CHROME determines whether the incoming block
should bypass the LLC or be placed in the cache, in which
case it is assigned with one of three possible Eviction Priority
Values (EPVs)1. The EPV of a cache block designates its
eviction priority; a lower EPV implies a lower eviction priority,
while a higher EPV indicates that the cache block is prioritized
for eviction. In the case of a cache hit, CHROME updates the
EPV of the corresponding block, selecting one of the three
possible levels according to the current policy.

C. Reward

In RL, the decisions of the agent are reward-driven: the
goal of the agent is to obtain the maximum cumulative
reward. For CHROME, the reward structure needs to reflect
an evaluation of the accuracy of each action (in terms of
achieving a desirable outcome) by taking into account system-
level feedback.

C-AMAT [50] can quantitatively measure the combined
impact of memory access locality and concurrency, taking
all types of memory access overlapping into account. We
employ the C-AMAT model in this study to provide precise
system-level feedback information to CHROME. The purpose
of having cache hierarchy is to provide faster access to
memory resources, thus avoiding time-consuming accesses
to off-chip main memory. However, not all workloads can
benefit from this. Particularly in multi-core systems, workloads
running on different cores contend for the shared LLC, causing
interference with one another. Assuming workloads are bound
to cores, during a runtime period (100K cycles in this study),
if the concurrent average access time to LLC from corei
is greater than the average latency of main memory, that
is, C-AMATi(LLC) > Tmem, it indicates that there is little
performance benefit for corei to cache the blocks at LLC
during this period, and we call this situation LLC-obstruction
for corei. In this study, we employ the C-AMAT model to
monitor the behavior of LLC-obstruction cores during runtime,
utilizing it as system feedback information to structure our
rewards.

1Advanced cache management schemes (such as [21], [23], [35], [43], [44],
[55]) utilize a similar counter for each cache block, which serves to indicate
the eviction priority of that block. These schemes enforce specialized cache
policies by periodically assigning or updating the eviction priority of each
block. Adopting EPVs in CHROME does not result in additional overhead.



We define four different rewards: RAC, RIN, RAC-NR, and
RIN-NR. 1) The reward RAC is assigned to an action when
its corresponding address is requested by either a demand or
prefetch access, and its corresponding block is in the cache
(cache hit). We further denote RD

AC for demand access and
RP

AC for prefetch access. 2) The reward RIN is assigned to an
action when the corresponding address is requested by either
a demand or prefetch access, and its corresponding block has
been evicted or bypassed (cache miss). Similarly we further
denote RD

IN for demand access and RP
IN for prefetch access. 3)

The reward RAC-NR is granted to an action, which can be a
bypassing action on a cache miss or assigning the block with
the highest EPV on a cache hit, when its corresponding address
is not requested by any demand or prefetch access within a
temporal window. We further differentiate this reward accord-
ing to the system-level feedback: ROB

AC-NR, if the corresponding
core is LLC-obstructed, and RNOB

AC-NR, otherwise. 4) The reward
RIN-NR is granted to an action, which can be a non-bypassing
action on a cache miss or assigning the block with anything
but the highest EPV on a cache hit, when its corresponding
address is not requested by a demand or prefetch access within
a temporal window. Similarly, we further differentiate this
reward according to the system-level feedback: ROB

IN-NR, if the
corresponding core is LLC-obstructed, and RNOB

IN-NR, if not.
The above reward structure in CHROME is designed to

achieve four key objectives. First, it provides positive rewards
for accurate actions leading to cache hits and assigns negative
rewards (penalties) for inaccurate actions leading to cache
misses. Doing so will incentivize CHROME to make more
accurate decisions to reduce cache misses. Second, it differ-
entiates the rewards based on whether the current request is
triggered by a demand or prefetch access. Such differentiation
will encourage CHROME to prioritize retaining blocks likely
to be requested next by demand accesses over those possibly
requested by prefetch accesses. Third, if a corresponding
address is predicted not to be requested by any demand or
prefetch access in a temporal window, we provide rewards to
incentivize the agent to bypass on a cache miss or to assign
the highest EPV to the block on a cache hit. Fourth, if a
corresponding address is not requested by any demand or
prefetch access within a temporal window, CHROME grants
either a larger positive reward or a larger penalty to the action
depending on whether the corresponding core is identified
as an LLC-obstructed core. This approach promotes actions
that can alleviate LLC obstruction, thereby enhancing overall
system performance. To achieve the above objectives, we
select the reward values empirically. Table II shows the specific
reward values used for this study.

V. CHROME: RL DESIGN

A. Overview of the RL Framework

CHROME consists of two separate tasks, an RL decision
task and an RL training task, which can run in parallel. In
order to implement these two tasks, we utilize two hardware
structures: the Q-Table and the Evaluation Queue (EQ). Q-
Table is designed to track the Q-values of all observed state-

LLC 
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Fig. 4: Overview of CHROME.

action pairs. EQ functions as a first-in-first-out queue with
a fixed capacity. Its primary role is to record the actions of
CHROME within a temporal window, thereby facilitating the
evaluation and reward of each action. Each EQ entry records
five pieces of information: the state vector, the action executed
by CHROME, whether the action was triggered by a hit or a
miss, the memory address of the requested cache block, and
the assigned reward. Figure 4 presents a high-level overview
of the CHROME framework.

RL decision task. For each LLC access, CHROME makes
a decision. CHROME observes the program features (PC and
page number) of the current access and incorporates them into
a state vector ( B ). CHROME then searches the Q-Table to
obtain the Q-values for all possible state-action pairs. Each pair
is composed of the given state and one of the potential actions
( C ). CHROME selects the action with the maximum Q-value
in the current state or chooses a random action with a given
probability (exploration), then executes the action in the cache
hierarchy ( D ). On a cache miss, the incoming cache block
will either be inserted into the LLC with an assigned EPV or
be bypassed. On a cache hit, the EPV of the corresponding
block is updated according to the chosen action.

RL training task. Since the effectiveness of each action
performed by CHROME cannot be immediately evaluated,
CHROME employs EQ to record recent actions, subsequently
assigning rewards to each. CHROME records the recently
executed action, a 1-bit indicator denoting whether the action
was triggered by a hit or miss, the corresponding state vector,
and the corresponding memory address as a new entry in the
EQ ( E ).

For each new LLC request, if the request address matches
the address stored in an EQ entry (indicating that CHROME
has previously executed an action for this address and this
address is now being requested again within a temporal
window), CHROME assigns a reward to the corresponding
EQ entry ( A ). This assignment is based on whether the
current request results in a cache hit (signifying that the action
associated with the EQ entry has effectively led to a cache hit)
or a miss (indicating that the action associated with the EQ
entry is not sufficiently accurate).

The size of the EQ is finite. If an evicted entry never receives
a reward (indicating that the corresponding address is not
requested within a temporal window), CHROME assigns a



1: procedure CHROME (addr)
2: if sampled_set (addr) then
3: entry ← search_EQ (addr)
4: if entry is valid and has_reward (entry) == false  then
5: if addr hits in a sampled set then
6: entry.reward ← %+,- or %+,.
7: else
8: entry.reward ← %/0- or %/0.
9: state ← get_state ( )

10: if addr misses in LLC then
11: if rand ( ) < ' then
12: action ← random_action ( )
13: else
14: action ← argmaxaQ (state, a)
15: else
16: if rand ( ) < ' then
17: action ← random_action ( )
18: else
19: action ← argmaxaQ (state, a)
20: execute action
21: if sampled_set (addr) then
22: new_entry ← create_EQ_entry (addr, state, action, trigger)
23: evict_entry ← insert_EQ (new_entry)
24: if has_reward (evict_entry) == false then
25: if evict_entry.trigger == miss then
26: if evict_entry.action == BYPASS then
27: evict_entry.reward ← %+,'0123 or %+,'01023
28: else
29: evict_entry.reward ← %/0'0123 or %/0'01023
30: else
31: if evict_entry.action == EPVH then
32: evict_entry.reward ← %+,'0123 or %+,'01023
33: else
34: evict_entry.reward ← %/0'0123 or %/0'01023
35: R ← evict_entry.reward
36: S1 ← evict_entry.state; A1 ← evict_entry.action
37: S2 ← EQ.head.state; A2← EQ.head.action
38: Q (S1, A1) ← Q (S1, A1) + α [R + γ Q (S2, A2) - Q (S1, A1)]

Algorithm 1 Reinforcement learning-based cache management algorithm
Called for every LLC request⊲

When a sampled set is accessed, search the corresponding EQ with the requested address⊲

If the request hits the sampled set, assign reward +!"# or +!"$

⊲

If the request misses the sampled set, assign reward +%&# or +%&$

⊲

Extract the state vector from the current request⊲

Perform exploration with a low probability *, select a legal random action⊲

Select the action (insert the incoming block in LLC with an EPV or bypass) with the highest Q-value⊲

Perform exploration with a low probability *, select a legal random action⊲

Select the action (update the EPV of the corresponding block in LLC) with the highest Q-value⊲

If the action occurs on a sampled set ⊲

Create a new EQ entry⊲

Insert the entry to EQ and get the evicted EQ entry⊲

If the evicted entry does not have a reward, and triggered by miss⊲

In case of bypassing action, assign reward +!"'&()* or +!"'&(&)*⊲

Otherwise assign reward +%&'&()* or +%&'&(&)*⊲

If the evicted entry does not have a reward, and triggered by hit⊲

In case of assigning EPVH action, assign reward +!"'&()* or +!"'&(&)*⊲

Otherwise assign reward +%&'&()* or +%&'&(&)*⊲

Get the reward stored in the evicted EQ entry⊲

Get the state and action from the evicted EQ entry

⊲

Get the state and action from the entry at the head of the EQ

⊲
Update Q-Table, based on SARSA

⊲

reward based on the corresponding action recorded in that
entry, the trigger (hit or miss) of the action, and system-
level feedback information. Finally, the state vector, action,
and reward of the evicted entry are utilized to update the
corresponding Q-value in the Q-Table ( F ).

B. RL-based Cache Management Algorithm

Algorithm 1 details how CHROME makes decisions and
performs online learning. Initially, all Q-values in the Q-Table
are set optimistically to the highest possible Q-value ( 1

1−γ ),
encouraging CHROME to explore the environment early in
the execution [52]. CHROME is trained by observing the
accesses to several sampled cache sets. Prior studies show
that memory access patterns are consistent across cache sets
[25], [26], [35], [55]. It is thus sufficient to train CHROME
by observing only accesses to a small number of sets (more
details in Section V-D).

For an LLC request with address addr, if it belongs to a
sampled set, CHROME searches EQ for addr (line 3). If a
match is found in the EQ and it does not have a reward,
CHROME assigns a reward to the corresponding EQ entry.
This reward is determined based on whether the corresponding
action results in a cache hit or a miss, and whether the LLC
request is triggered by demand or prefetch (lines 4-8).

For every LLC access, CHROME extracts the state vector
from the observed program features (line 9). CHROME either
selects an action randomly to explore the environment (line
12 for cache miss and line 17 for cache hit) or refers to
the Q-Table based on the given state vector and selects the
action with the highest Q-value (line 14 for cache miss and
line 19 for cache hit). After performing the selected action
(line 20), if it is carried out on a sampled set, CHROME
creates a new EQ entry with the state vector, the selected
action, the corresponding address, and the trigger (lines 21-22).
CHROME then inserts the new entry into the EQ, resulting in
the eviction of the least recent entry (line 23).

If the evicted entry does not have a reward (indicating no
request for the corresponding address within a given temporal
window), CHROME assigns a reward based on the action
it records, the trigger of the action, and concurrency-aware
system-level feedback information (lines 24-34). If the trigger
is a cache miss, bypassing is encouraged, while updating the
block with the highest eviction priority (EPVH) is encouraged
if the trigger is a hit. Finally, CHROME updates the Q-value
of the evicted state-action pair using the reward stored in the
evicted EQ entry and the Q-value of the EQ header entry
according to the SARSA algorithm [40] (lines 35-38).
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C. Q-Table Organization

CHROME retrieves the Q-value via a table lookup, using
the associated state vector and action, to exploit its learned
experiences. A naive implementation uses a monolithic 2-
dimensional Q-Table to record the Q-values for all possible
state-action pairs. However, the storage overhead of such an
implementation can be exorbitant due to the vast number of
potential states. Furthermore, accessing a large monolithic
table can significantly increase latency. One needs a more
practical and efficient method for storing Q-values.

In CHROME, we divide the monolithic Q-Table based on
the number of features in the state vector. Specifically, we
partition the Q-Table into two sections, each corresponding to
a feature, to record the Q-values of the feature-action pairs.
To retrieve the Q-value for a given state S (which is a 2-
dimensional vector of two features, f1 and f2, the PC signature
and the page number) and an action A, CHROME queries the
Q-value for each feature-action pair, i.e., Q(f1, A) and Q(f2,
A), in parallel. The maximum Q-value between Q(f1, A) and
Q(f2, A) is deemed the final Q-value of the state S and action
A: Q(S,A) = max(Q(f1, A), Q(f2, A)). This design ensures
that each CHROME action is driven by the feature offering
the highest feature-action Q-value.

To reduce storage overhead and balance between resolution
and generalization [6], [20], [52], we further divide each
feature-action Q-Table into multiple sub-tables. Each sub-table
is a two-dimensional table indexed by feature and action and
stores a partial Q-value of a feature-action pair. To retrieve
Q(fi, A), CHROME xors the given feature with a constant
number, then uses a hash function to get the feature index for
the corresponding sub-table. CHROME looks up sub-tables
in parallel and obtains all the partial Q-values of a feature-
action pair. The final Q-value for the feature-action pair can
be computed by summing all the respective partial Q-values.

Figure 5 illustrates a five-stage pipeline for the Q-Table
lookup. In the first stage, CHROME extracts the features
from the given state vector and generates feature-action pairs.
In the second stage, CHROME obtains the index for the
corresponding sub-table of each feature-action pair. In the
third stage, CHROME retrieves the partial Q-values from the
sub-tables. In the fourth stage, it calculates the Q-value of
each feature-action pair by summing the corresponding partial

Q-values. Finally, in the fifth stage, CHROME selects the
maximum value among all feature-action Q-values as the Q-
value of the state-action pair.

D. EQ Organization and Q-value Update

CHROME stores a sequence of recent actions in the
EQ, where each stored action is evaluated and assigned an
appropriate reward based on the access patterns observed
subsequently. To strike a balance between functionality and
practicality, the EQ is designed to maintain an adequate
number of entries to store recent actions along with their
corresponding states, addresses, triggers, and received rewards,
while ensuring that the total storage overhead remains ac-
ceptable. Rather than observing the cache requests from all
cache sets in the LLC, CHROME randomly selects a few
sampled cache sets to train the agent, a method that has been
adopted earlier in other contexts [21], [26], [35], [43], [55].
Specifically, CHROME observes the cache behaviors from 64
sampled sets, and records the actions taken on these sampled
sets in the EQ. To ensure the accurate evaluation of actions
from these sampled sets, the EQ is organized into 64 separate
first-in-first-out (FIFO) queues, each with a fixed capacity of
28 entries.

The size of the EQ is determined by balancing the need
for a wider observation window of data accesses against
the frequency of Q-Table updates. We provide a sensitivity
analysis examining the impact of the number of FIFO entries
in Section VII-F. The reward for each EQ entry is assigned
either prior to or at the moment of its eviction from the
corresponding queue (as discussed in Section IV).

Upon eviction of an entry from a queue, the Q-value of
the evicted state-action pair is updated using the SARSA
algorithm [40] based on the reward stored in the evicted EQ
entry and the Q-value of the state-action pair at the head of the
corresponding queue. SARSA is an on-policy reinforcement
learning algorithm that estimates the Q-value based on the
current policy being executed. Given the complex phase-
changing workloads and the diverse access patterns and system
configurations, the use of the online algorithm SARSA is
considered beneficial as it allows for continuous policy updates
in response to the evolving dynamics of the environment.
The operation of updating the Q-value is similar to previous
prediction-based schemes [21], [43] and is carried out off the
critical path. We discuss the cost in more detail in Section V-G.

E. Exploration vs. Exploitation

Exploration and exploitation are important in RL. CHROME
employs the ϵ-greedy method [52] to strike a balance between
exploration and exploitation. CHROME randomizes its action
with a small probability ϵ, exploring to gain further insights
about the access pattern and the memory system. Conversely, it
exploits the learned policy with a probability of 1-ϵ, selecting
the action with the highest Q-value. The ϵ-greedy method
ensures CHROME can sustain exploration while exploiting
the existing policy to secure maximum long-term rewards.



TABLE II: Reward values and hyper-parameters.

Reward Values
RD

AC = 20, RP
AC = 5, RD

IN = -20, RP
IN = -5,

ROB
AC-NR = 28, RNOB

AC-NR = 10,
ROB

IN-NR = -22, RNOB
IN-NR = -10

Hyper-parameters α = 0.0498, γ = 0.3679, ϵ = 0.001

TABLE III: Storage overhead of CHROME.

Component Details Overhead

Q-Table 2 features; 4 sub-tables/feature;
2048 entries/sub-table; 16 bits/entry 32KB

EQ
64 queues; 28 entries/queue; 58 bits/entry
(state: 33 bits, action: 2 bits, reward: 6 bits,
hashed address: 16 bits, trigger: 1 bit)

12.7KB

Metadata EPV (2-bit/LLC block) 48KB
Total 92.7KB

F. Hyper-Parameter Tuning

Hyper-parameters, such as the learning rate (α), discount
factor (γ), and exploration rate (ϵ), can significantly impact
the learning efficiency of CHROME and the accuracy of
its decisions. Therefore, these hyper-parameters need careful
tuning. First, we define the range within which each parameter
can vary. We set α ∈ [1e−9, 1e0], γ ∈ [1e−9, 1e0], and
ϵ ∈ [0, 1], providing a broad and reasonable scope for hyper-
parameter tuning. Second, we divide each value range into
grids, resulting in a total of 1,000 potential hyper-parameter
combinations. Third, we randomly select 20 memory-intensive
SPEC traces. We then evaluate the performance of CHROME
across all hyper-parameter combinations. (We use a 4-core
system configuration with a next-line prefetcher at L1 and a
stride prefetcher at L2.) Fourth, we select the optimal hyper-
parameter combination that provides the most significant ge-
ometric mean performance gain over the LRU baseline.

In Section VII-H, we show the results of a sensitivity study
of the hyper-parameters. The bottom part of Table II displays
the chosen values of the hyper-parameters after tuning. It
is important to note that CHROME only requires a one-
time hyper-parameter tuning. Once we have determined the
hyper-parameters, CHROME is expected to learn online by
interacting with the memory system and making decisions,
without additional offline training or prior knowledge.

G. Overhead of CHROME

Table III shows the storage overhead for CHROME. The
total overhead is 92.7KB, which represents only 0.75% of the
capacity of a 12MB LLC in a 4-core system. This overhead
is distributed across the Q-Table, the EQ, and the storage
for EPVs employed in cache management. In this study, the
overhead of CHROME remains constant. In particular, all
cache behaviors are observed from 64 sampled sets, which
does not change with the LLC capacity, effectively avoiding
an escalation in storage overheads even in larger-scale systems.
As shown in Table IV, CHROME has the least storage over-
head compared to other SOTA cache management schemes.

When an LLC access occurs, there is a high probability
that CHROME will determine the action taken by looking

TABLE IV: Storage overhead for different schemes (4-core
configuration, 12-way 12MB LLC).

Holistic Concurrency-aware Overhead
Hawkeye [21] No No 146KB
Glider [44] No No 254KB
Mockingjay [43] Yes No 170.6KB
CARE [43] No Yes 130.5KB
CHROME Yes Yes 92.7KB

TABLE V: Simulated system configurations.

Processor 4/8/16 cores, 4GHz, 6-wide fetch/execute/commit,
512-entry ROB, Perceptron branch predictor [24]

L1 Cache private, 48KB D-cache, 64B line, 12-way,
5-cycle latency, 16-entry MSHR, LRU

L2 Cache private, 1.25MB, 64B line. 20-way,
10-cycle latency, 48-entry MSHR, LRU

LLC shared, 3MB/core, 64B line, 12-way,
40-cycle latency, 64-entry MSHR/slice

DRAM
8GB 2 channels, 2 ranks/channel, 8 banks/rank,
64-bit channel, DDR4-3200MT/s, tRP=12.5ns,
tRCD=12.5ns, tCAS=12.5ns

TABLE VI: Evaluated workloads.

Suite Workloads
SPEC

06
gcc, bwaves, mcf, milc, zeusmp, gromacs, leslie3d, soplex,
hmmer, GemsFDTD, libquantum, astar, wrf, xalancbmk

SPEC
17

gcc, bwaves, mcf, cactuBSSN, lbm, omnetpp, wrf, xalancbmk,
cam4, pop2, fotonik3d, roms, xz

GAP bfs-or, bfs-tw, bfs-ur, cc-or, cc-tw, cc-ur, pr-or, pr-tw, pr-ur,
sssp-or, sssp-tw, sssp-ur

up the Q-Table. As a result, the Q-Table lookup operation
directly impacts the decision time of CHROME. We pipeline
the Q-Table lookup to reduce the decision latency (Section
V-C). We use CACTI 7.0 [2] to estimate the latency for the
Q-Table lookups, which comes to approximately 2 cycles in
our configuration. Note that, the Q-Table operations are off the
critical path, ensuring no interference with the determination
of hits or misses by the cache controller. The complexity
of the prediction path in CHROME is similar to that of the
other SOTA prediction-based schemes [21], [35], [43]. We also
use CACTI to evaluate the area and power consumption of
CHROME. CHROME consumes 1.55 mm2 of area and 76.05
mW of power in total, of which 0.30 mm2 of area and 7.27
mW of power are used for EQ to train the RL agent – a
rather modest overhead considering the significant gain in the
memory performance.

VI. EVALUATION METHODOLOGY

We evaluate CHROME using the cycle-accurate ChampSim
simulator [16], with the version released by the 1st Instruc-
tion Prefetching Championship (IPC-1 [19]). We simulate the
latest-generation Intel Alder Lake [39] multi-core processor
that supports up to 16 cores. To evaluate the performance of
CHROME with prefetching, we follow the methodology of
2nd cache replacement championship (CRC-2 [9]) by applying
the next-line prefetcher at L1 and stride prefetcher [14], [15]
at L2 as default. Table V shows the configuration parameters.
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We evaluate CHROME using a diverse set of memory-
intensive workloads from the SPEC CPU2006 [46], SPEC
CPU2017 [47], and GAP [3] benchmark suites. Each selected
workload trace has an LLC miss per kilo instructions (MPKI)
greater than 1 in the baseline system without prefetching.
Table VI summarizes the workloads evaluated in this study.
For the SPEC CPU2006 and SPEC CPU2017 workloads, we
employ the traces provided by the 3rd Data Prefetching Cham-
pionships (DPC-3 [10]), involving a total of 20 traces from
14 SPEC CPU2006 workloads and 22 traces from 13 SPEC
CPU2017 workloads. For the GAP workloads, we select 5
primitive graph algorithms, including Betweenness Centrality
(bc), Breadth First Search (bfs), Connected Components (cc),
PageRank (pr), and Single Source Shortest Path (sssp), and 3
graph datasets, including orkut (or) [29], twitter (tw) [3], and
urand (ur) [3], creating 15 distinct traces for evaluation.

For multi-core multi-programmed simulations, we use both
homogeneous and heterogeneous workload mixes. For an n-
core homogeneous workload setting, we test with n identical
copies of a memory-intensive trace, each core executing the
same trace. For an n-core heterogeneous workload setting,
we randomly select n traces from all memory-intensive SPEC
traces and execute a different trace on each core. We generate
150 4-core, 25 8-core, and 25 16-core heterogeneous mixes.
For simulation, we warm up each core with 50M instructions
from the trace, and then simulate the following 200M instruc-
tions.

To evaluate performance, LRU is selected as the baseline
for comparison. We compare CHROME with four SOTA LLC
management schemes: Hawkeye [21], Glider [44], Mockingjay
[43], and CARE [35]. We report the results as the normalized
weighted speedup over LRU, a measure commonly used for
evaluating shared caches [9], [12], [43].

VII. EXPERIMENT RESULTS

A. Performance on Four-Core Systems

Figure 6 displays the performance improvement of different
cache management schemes in a 4-core system across all
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Fig. 8: Prefetch hit for 4-core SPEC homogeneous mixes.
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Fig. 9: Bypass coverage and bypass efficiency for 4-core SPEC
homogeneous mixes.

SPEC workloads using homogeneous workload mixes. The
results show that CHROME consistently achieves outstanding
performance. Specifically, with prefetching, CHROME, which
employs a holistic approach to cache management, delivers
an average improvement of 9.2% over the LRU baseline. In
comparison, the average speedups for Hawkeye, Glider, and
CARE, those without the holistic view, are 5.7%, 5.6%, and
7.6%, respectively. CHROME also adapts its caching decisions
using reinforcement learning. It outperforms Mockingjay, a
static method that achieves an average speedup of 7.6%.

In order to analyze the performance of CHROME in depth,
we evaluate the effectiveness of CHROME in comparison with
other SOTA schemes on two key metrics: LLC demand miss
ratio and effective prefetch hit ratio (EPHR).

Figure 7 shows the LLC demand miss ratio comparing five
cache management schemes. CHROME achieves the lowest
LLC demand miss ratio at 71.1%. For comparison, the average
LLC demand miss ratios for Hawkeye, Glider, Mockingjay,
and CARE are 75.9%, 75.7%, 73.6%, and 72.4%, respectively.
The use of online reinforcement learning in CHROME allows
it to dynamically adapt to changing access patterns, ensuring
that cache blocks with higher reuse potential are retained.
Figure 8 displays the LLC EPHR for each scheme. We define
EPHR as the ratio of prefetch hits to the total number of
prefetched blocks inserted into the cache. It is a crucial metric
as it evaluates how effectively prefetched blocks are utilized
before eviction. CHROME leads with the highest EPHR at
41.4%. EPHR for Hawkeye, Glider, Mockingjay, and CARE
comes at 27.9%, 23.0%, 33.2%, and 22.9%, respectively.
This higher EPHR achieved by CHROME indicates its ef-
fectiveness in harmonizing cache replacement, bypassing, and
prefetching, for improving cache performance. The ability
to harmonize cache replacement, bypassing, and prefetching
distinguishes CHROME from other contemporary schemes,
and helps achieve superior performance, specifically its low
demand miss ratio and high EPHR.

Mockingjay represents an alternative scheme that incor-
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Fig. 11: Speedup for systems with 4, 8, and 16 cores (using
SPEC workloads).

porates bypassing. Figure 9 shows the bypass coverage and
bypass efficiency of Mockingjay and CHROME in a 4-core
system. Bypass coverage quantifies the fraction of all incom-
ing blocks that are bypassed, indicating how frequently the
bypassing decisions are made. Bypass efficiency evaluates the
effectiveness of the bypassing decisions by measuring the frac-
tion of bypassed blocks that are not subsequently demanded.
Our experiments show that CHROME provides higher bypass
coverage and efficiency compared to Mockingjay. On average,
41.5% of incoming blocks are bypassed by CHROME, and
70.8% of the bypassed blocks are never required.

For the 4-core heterogeneous workload, we examine 150
combinations of workload mixes, as described in Section VI.
Figure 10 presents the weighted speedup of Hawkeye, Glider,
Mockingjay, and CHROME for all 150 cases sorted in ascend-
ing order of CHROME’s performance. With prefetching en-
abled, CHROME provides a geometric mean speedup of 9.6%
over LRU, outperforming Hawkeye, Glider, and Mockingjay
with a speedup of 6.7%, 7.4%, and 8.6%, respectively. We note
that CHROME demonstrates rather consistent performance
improvement compared to the other SOTA schemes. For 119
out of 150 heterogeneous mixes, CHROME yields the best
performance. In particular, CHROME outperforms the second-
best performing scheme, Mockingjay, in 137 out of 150 cases.
Evidently, CHROME can learn memory access patterns more
effectively, which results in better performance gains overall.

B. Scalability

We examine the performance of CHROME as we increase
the number of cores. Figure 11 summarizes the performance
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Fig. 12: Performance of CHROME and N-CHROME (using
SPEC workloads).

results for both homogeneous and heterogeneous SPEC work-
load mixes. We make three observations from the results. First,
the opportunity for improvement from cache management
grows with more cores due to the increasing pressure on
the LLC. Second, CHROME consistently outperforms the
other SOTA schemes across all system configurations. For
homogeneous workload mixes in eight (and sixteen) core
systems, CHROME achieves a speedup of 10.6% (12.9%),
with 6.3% (6.8%) for Hawkeye, 6.2% (6.2%) for Glider, 8.5%
(8.2%) for Mockingjay, and 8.6% (10.2%) for CARE. For
heterogeneous workload mixes in eight (and sixteen) core
systems, CHROME achieves a speedup of 12.9% (14.4%),
with 6.3% (7.6%) for Hawkeye, 8.2% (9.3%) for Glider, 9.2%
(10.4%) for Mockingjay, and 11.3% (10.8%) for CARE. Last,
the performance advantage of CHROME over others increases
with more cores. CARE considers both data locality and
concurrency when making cache replacement decisions. Con-
sequently, it exhibits better scalability than Hawkeye, Glider,
and Mockingjay. CHROME outperforms CARE by a signif-
icant margin. For homogeneous workload mixes, CHROME
outperforms CARE by 1.4% on 4 cores, by 1.9% on 8 cores,
and by 2.5% on 16 cores. For heterogeneous workload mixes,
CHROME outperforms CARE by 0.6% on 4 cores, by 1.5%
on 8 cores, and by 3.2% on 16 cores.

C. Performance without System-Level Feedback Information

To evaluate the effectiveness of the concurrency-aware
system-level feedback information, we introduce a simpler
version of CHROME, referred to as N-CHROME, which
follows a workflow similar to that of CHROME, but lacks
the awareness of the C-AMAT values for the cores. That is,
N-CHROME does not differentiate situations whether the core
issuing memory access is contributing to LLC obstruction. In
N-CHROME, the RAC-NR and RIN-NR are set to 10 and -10,
respectively, as in the non-LLC-obstruction case.

Figure 12 presents a performance comparison between
CHROME and N-CHROME across all SPEC homogeneous
workload mixes in systems ranging from 4-core to 16-core
configurations. As expected, CHROME consistently outper-
forms N-CHROME for all system configurations. Moreover,
the performance benefit derived from concurrency awareness
increases with the number of cores. On average, CHROME
provides a speedup of 9.2%, 10.6%, and 12.9% in the 4-
core, 8-core, and 16-core systems, respectively, whereas N-
CHROME improves performance by 8.3%, 9.1%, and 10.0%,
respectively. The C-AMAT model offers accurate concurrency-
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Fig. 14: Speedup with different prefetching schemes.

aware system-level feedback information, thereby enhancing
the ability of CHROME to deliver robust performance. As the
number of cores increases, the number of concurrent accesses
in LLC also increases, thus increasing the opportunity for
CHROME to learn about the environment.

D. Performance on Unseen Traces

To demonstrate the generalization of CHROME, we evalu-
ated the performance of CHROME using GAP workloads that
were not used for hyper-parameter tuning. This is to examine
how CHROME reacts to unknown workloads. Figure 13 shows
that CHROME consistently displays outstanding scalability
and outperforms all other schemes for all configurations, even
for the unseen workloads. In the 4-core system, CHROME
outperforms LRU, Hawkeye, Glider, Mockingjay, and CARE
by 9.5%, 6.6%, 5.9%, 4.0%, and 3.0%, respectively. In the 8-
core system, CHROME achieves a speedup of 12.1% over
LRU, compared with an 8.3% improvement provided by
CARE, the second-best scheme among all tested schemes.
In the 16-core system, CHROME improves performance by
16.0%, compared to a 12.5% improvement provided by CARE,
which is again the second-best scheme in this case.

E. Performance on Different Prefetching Schemes

To evaluate the adaptability of cache management schemes,
we present a performance comparison of CHROME in a 4-
core system using two state-of-the-art multi-level prefetching
schemes: (1) a stride prefetcher [14], [15] at L1 and a streamer
prefetcher [7] at L2, a combination commonly employed in
commercial Intel processors [18], and (2) IPCP [38], the
winner prefetching scheme of the DPC-3 [10]. Figure 14
demonstrates that CHROME outperforms all other schemes
with both prefetching configurations. When employing a stride
prefetcher at L1 and a streamer prefetcher at L2, CHROME
enhances performance by 5.9%, while Mockingjay, another
integrated scheme, improves performance by 5.2%. When em-
ploying the IPCP prefetching scheme, CHROME attains a ge-

TABLE VII: Speedup with different FIFO sizes.

FIFO Size 12 16 20 24 28 32 36
Speedup(%) 6.2 7.1 7.8 8.2 9.2 8.0 7.5
UPKSA 911.2 884.1 857.0 830.6 805.2 781.4 759.1
Overhead(MB) 5.4 7.3 9.1 10.9 12.7 14.5 16.3
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Fig. 16: Hyper-parameter sensitivity of CHROME: (a) learning
rate α, (b) discount factor γ, (c) exploration rate ϵ.

ometric mean speedup of 7.2% over LRU, while Mockingjay
achieves a performance improvement of 5.7%. The integration
of reinforcement learning greatly enhances the adaptability of
CHROME across different prefetch configurations.

F. Performance with Different EQ FIFO Sizes

Table VII shows the speedup of CHROME for all 4-core
SPEC homogeneous mixes, the Q-Table updates per kilo sam-
pled accesses (UPKSA), and the storage overhead associated
with varying EQ FIFO sizes. The FIFO size strikes a balance:
a larger FIFO provides a broader observation window, aiding
CHROME in capturing intricate access patterns. However,
this also reduces the frequency of Q-Table updates, poten-
tially affecting the adaptability of the RL agent. Moreover, a
larger FIFO brings added overhead. Optimal performance for
CHROME is observed with a FIFO size of 28.

G. Performance with Different Features

Figure 15 delineates the impact of individual state features
in CHROME across all 4-core SPEC homogeneous workload
mixes. Utilizing the PC as the sole state feature results in a
7.2% speedup over LRU. Conversely, employing only the PN
achieves a 3.6% speedup. Notably, when CHROME integrates
both PC and PN, a superior speedup of 9.2% is attained.
These results accentuate the combined efficacy of harnessing
control-flow and data-access features. Together, they adeptly
capture the nuanced memory access patterns of applications,
facilitating more informed cache management decisions.

H. Performance with Different Hyper-Parameters

Figure 16 shows the overall speedup achieved by CHROME
for all 4-core SPEC homogeneous workload mixes with dif-



ferent hyper-parameters. Figure 16(a) indicates optimal per-
formance at a learning rate of α = 1e−3, emphasizing the
balance between exploiting learned experiences and adapting
to dynamic environments. Figure 16(b) reveals the best dis-
count factor as γ = 1e−1, balancing immediate and long-
term rewards. Lastly, Figure 16(c) suggests that excessive
exploration, beyond ϵ = 0.001, can hinder performance by
not sufficiently leveraging the learned policy.

VIII. OTHER RELATED WORKS

In our experiments, CHROME is evaluated against four
state-of-the-art cache management schemes: Hawkeye [21],
Glider [44], Mockingjay [43], and CARE [35]. In this section,
we discuss the additional related works.

PACMan [56] mitigates prefetch-induced cache interference
by altering cache insertion and hit promotion policies, dis-
tinguishing between demand and prefetch requests. SHiP++
[58] employs a history table (SHCT) to anticipate re-reference
patterns of cache blocks using PCs. It refines SHiP [55] by up-
dating the SHCT solely on the first re-reference, differentiating
demand accesses from prefetches, and implementing prefetch-
aware updates. PA-Hawkeye [22] evolves from Hawkeye [21]
and observes that Belady’s OPT algorithm falls short with
prefetching. To reduce demand misses, it selectively increases
prefetcher traffic. Sethumurugan et al. [42] utilize reinforce-
ment learning offline to bolster prediction accuracy and derive
insights from the learned model. While these schemes empha-
size the synergy between LLC management and prefetching,
they often overlook the significance of bypassing. In contrast,
CHROME stands out as a holistic approach, combining cache
replacement, bypassing, and prefetching. It is also an online
RL-based cache management framework, using multiple pro-
gram features and concurrency-aware feedback.

IX. CONCLUSION

This paper introduces CHROME, a novel concurrency-
aware, online reinforcement learning-based holistic cache
management framework. CHROME continuously learns the
policy by interacting with the processor and the memory
system. The nature of online reinforcement learning allows
CHROME to perform well under varying system config-
urations and dynamic workload characteristics. CHROME
makes bypassing and replacement decisions based on mul-
tiple program features and concurrency-aware system-level
feedback information. Our extensive evaluations demonstrate
that CHROME consistently outperforms state-of-the-art cache
management schemes across different configurations, demon-
strating the significant potential of CHROME for data-
intensive scalable computing systems.
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