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Concurrent Memory Accesses
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• Modern processors support data concurrency
• Data access concurrency is widely available 
• Some misses are isolated
• Some misses overlap with other hits (hit-miss overlapping)
• Some misses overlap with other miss (miss-miss overlapping)

• Cache miss penalty can be hidden by assess overlapping
• The cost of cache misses varies



Motivation

The cache bottleneck
• Performance gap between CPU and memory
• Multi-core poses challenges on shared cache management

The cache management solution
• Reduce the number of cache misses (data locality)
• Reduce costly misses (data concurrency)
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Existing Solutions

Tradition: Locality-based cache management
• Tries to reduce miss count
• Assumption: Reducing miss count reduces memory-related stalls
• Enhanced by consider data concurrency

Advanced: MLP-based cache management
• Considering miss-miss overlapping
• Assumption: Reducing an isolated miss helps performance more 

than reducing a parallel miss 
• Possible enhancement: hit-miss overlapping?
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Observation - Hit-Miss Overlapping

• 30% - 80% misses in LLC have hit-miss overlapping
• Hit-miss overlapping cannot be ignored
• A miss without hit-miss overlapping (pure miss) can increase the 

latency of providing data to the upper-level cache
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Percentage of misses with hit-miss overlapping. 



Our Solution
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A comprehensive cache management framework that 
considers both data locality and full data concurrency



Key Contributions
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Pure Miss Contribution (PMC), to quantify the cost and 
performance impact of outstanding cache misses

CARE, a dynamic adjustable, concurrency-aware, low-
overhead cache management framework



Pure Miss Contribution (PMC) - Definition
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• PMC is the number of cycles of the miss that causes the memory stall
• The contribution of each miss to the active pure miss cycles
• No hit accesses appear in pure miss cycles, the latency of miss accesses

cannot be hidden, causing memory stalls

How to measure it?



Pure Miss Contribution (PMC) - Measurement
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Pure Miss Contribution (PMC) - Predictability
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• Can current PMC be used to predict future PMC?
• Using Program Counter (PC) to predict PMC

PMC values of the misses caused by the same PC are 
relatively stable



CARE: CONCURRENCY-AWARE CACHE MANAGEMENT 
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Signature History Table (SHT)
• Keeping track of the re-

reference and PMC behaviors 
of LLC blocks 

• Associating accesses with PC 
signature

Signature-Based Predictor (SBP) 
• Making re-reference and PMC 

predictions 
• Performing cache insertions 

and hit promotions
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CARE
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•Making re-reference and PMC predictions 
• CARE identifies the re-reference behavior of a cache block as
• High-Reuse if the related RC counter is 7 
• Low-Reuse if the related RC counter is 0 
• All other cache accesses are classified as Moderate-Reuse 

• CARE predicts the impact of a cache block on performance as
• High-Cost if the related PD counter is 7
• Low-Cost if the related PD counter is 0



CARE - Management Policies 
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• Improve data locality
• Keep High-Reuse cache blocks 
• Give higher eviction priority to Low-Reuse blocks

• Take data concurrency into account
• For Moderate-Reuse blocks:
• Keep High-Cost cache blocks to reduce expensive misses
• Give higher eviction priority to the Low-Cost blocks

• 2-bit Eviction Priority Value (EPV)
• Reflect the eviction priorities of the cache block 



More in the Paper
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• CARE’s Cache Management Policies
• Insertion policy
• Hit-promotion policy 
• Victim selection

• Collaboration with Prefetching

• Dynamic Threshold Reconfiguration Mechanism
• Quantize PMC values to suit different workloads and different phases



Simulation Methodology
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• Champsim trace-driven simulator
• 45 single-core memory-intensive workload traces

• SPEC CPU2006 and CPU2017
• GAP

• Homogeneous and heterogeneous multi-core mixes
• Prefetcher

• L1D: Next-line prefetcher
• L2: IP-stride prefetcher

• Five state-of-the-art LLC management schemes
• LRU
• SHiP++ [Young+, 2nd Cache Replacement Championship, 2017]
• Hawkeye [Jain+, ISCA’16]
• Glider [Shi+, MICRO’19]
• Mockingjay [Shah+, HPCA’22]



Performance with Varying Core Count
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CARE can accurately predict the cache 
behavior of different workloads

CARE’s gain increases with core count

CARE consistently provides the highest 
performance in all core configurations



Performance Improvement via PMC
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M-CARE
• Extend the MLP-based 

cost [Qureshi+, ISCA’06]
• The workflow of M-

CARE is similar to
CARE

• Use MLP-based cost 
to analyze data access 
concurrency and guide 
cache management

The accurate analysis of data concurrency by PMC 
provides CARE with a performance advantage



Overhead of CARE
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• 26.6 KB of total metadata storage per core
• Only simple tables
• 6.8 KB for concurrency awareness



Summary
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Pure Miss Contribution (PMC), 
a comprehensive metric used to weigh the

performance cost of each cache miss

CARE considers locality, concurrency,
and overlapping to guide cache replacement decision

CARE outperforms state-of-the-art cache management schemes
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