
Xiaoyang Lu, Rujia Wang, Xian-He Sun

CARE:
A Concurrency-Aware Enhanced Lightweight

Cache Management Framework

Concurrent Memory Accesses

CARE: A Concurrency-Aware Enhanced Lightweight Cache Management Framework 1

• Modern processors support data concurrency
• Data access concurrency is widely available
• Some misses are isolated
• Some misses overlap with other hits (hit-miss overlapping)
• Some misses overlap with other miss (miss-miss overlapping)

• Cache miss penalty can be hidden by assess overlapping
• The cost of cache misses varies

Motivation

The cache bottleneck
• Performance gap between CPU and memory
• Multi-core poses challenges on shared cache management

The cache management solution
• Reduce the number of cache misses (data locality)
• Reduce costly misses (data concurrency)

CARE: A Concurrency-Aware Enhanced Lightweight Cache Management Framework 2

Existing Solutions

Tradition: Locality-based cache management
• Tries to reduce miss count
• Assumption: Reducing miss count reduces memory-related stalls
• Enhanced by consider data concurrency

Advanced: MLP-based cache management
• Considering miss-miss overlapping
• Assumption: Reducing an isolated miss helps performance more

than reducing a parallel miss
• Possible enhancement: hit-miss overlapping?

CARE: A Concurrency-Aware Enhanced Lightweight Cache Management Framework 3

Observation - Hit-Miss Overlapping

• 30% - 80% misses in LLC have hit-miss overlapping
• Hit-miss overlapping cannot be ignored
• A miss without hit-miss overlapping (pure miss) can increase the

latency of providing data to the upper-level cache

CARE: A Concurrency-Aware Enhanced Lightweight Cache Management Framework 4

Percentage of misses with hit-miss overlapping.

Our Solution

CARE: A Concurrency-Aware Enhanced Lightweight Cache Management Framework 5

A comprehensive cache management framework that
considers both data locality and full data concurrency

Key Contributions

CARE: A Concurrency-Aware Enhanced Lightweight Cache Management Framework 6

Pure Miss Contribution (PMC), to quantify the cost and
performance impact of outstanding cache misses

CARE, a dynamic adjustable, concurrency-aware, low-
overhead cache management framework

Pure Miss Contribution (PMC) - Definition

CARE: A Concurrency-Aware Enhanced Lightweight Cache Management Framework 7

• PMC is the number of cycles of the miss that causes the memory stall
• The contribution of each miss to the active pure miss cycles
• No hit accesses appear in pure miss cycles, the latency of miss accesses

cannot be hidden, causing memory stalls

How to measure it?

Pure Miss Contribution (PMC) - Measurement

CARE: A Concurrency-Aware Enhanced Lightweight Cache Management Framework 8

.

.

.

.

.

.

.

.

.

Way n

DataTagV

Tag Set OffsetAddress

. .
.

. .
.

MSHR

Access Detector (AD)

Pure Miss Detector
(PMD)

PMC Calculation Unit
(PCU)

PMC Measurement Logic
(PML)

Select

Compare
Hit

Data

.

.

.

.

.

.

.

.

.

Way 1

DataTagV
Way 0

DataTagV

...

V Block Addr. Issued PMC
...

Miss

MSHR tracks all in flight misses
Add a field PMC to each MSHR entry
AD tracks the hit activities
PMD determines whether the current
cycle is an active pure miss cycle
Every pure miss cycle for each entry in
MSHR: !"# += 1/(
• N = Number of outstanding misses in MSHR

Pure Miss Contribution (PMC) - Measurement

CARE: A Concurrency-Aware Enhanced Lightweight Cache Management Framework 8

.

.

.

.

.

.

.

.

.

Way n

DataTagV

Tag Set OffsetAddress

. .
.

. .
.

MSHR

Access Detector (AD)

Pure Miss Detector
(PMD)

PMC Calculation Unit
(PCU)

PMC Measurement Logic
(PML)

Select

Compare
Hit

Data

.

.

.

.

.

.

.

.

.

Way 1

DataTagV
Way 0

DataTagV

...

V Block Addr. Issued PMC
...

Miss

MSHR tracks all in flight misses
Add a field PMC to each MSHR entry
AD tracks the hit activities
PMD determines whether the current
cycle is an active pure miss cycle
Every pure miss cycle for each entry in
MSHR: !"# += 1/(
• N = Number of outstanding misses in MSHR

Pure Miss Contribution (PMC) - Measurement

CARE: A Concurrency-Aware Enhanced Lightweight Cache Management Framework 8

.

.

.

.

.

.

.

.

.

Way n

DataTagV

Tag Set OffsetAddress

. .
.

. .
.

MSHR

Access Detector (AD)

Pure Miss Detector
(PMD)

PMC Calculation Unit
(PCU)

PMC Measurement Logic
(PML)

Select

Compare
Hit

Data

.

.

.

.

.

.

.

.

.

Way 1

DataTagV
Way 0

DataTagV

...

V Block Addr. Issued PMC
...

Miss

MSHR tracks all in flight misses
Add a field PMC to each MSHR entry
AD tracks the hit activities
PMD determines whether the current
cycle is an active pure miss cycle
Every pure miss cycle for each entry in
MSHR: !"# += 1/(
• N = Number of outstanding misses in MSHR

Pure Miss Contribution (PMC) - Predictability

CARE: A Concurrency-Aware Enhanced Lightweight Cache Management Framework 9

• Can current PMC be used to predict future PMC?
• Using Program Counter (PC) to predict PMC

PMC values of the misses caused by the same PC are
relatively stable

CARE: CONCURRENCY-AWARE CACHE MANAGEMENT

CARE: A Concurrency-Aware Enhanced Lightweight Cache Management Framework 10

Signature History Table (SHT)
• Keeping track of the re-

reference and PMC behaviors
of LLC blocks

• Associating accesses with PC
signature

Signature-Based Predictor (SBP)
• Making re-reference and PMC

predictions
• Performing cache insertions

and hit promotions

CARE: CONCURRENCY-AWARE CACHE MANAGEMENT

CARE: A Concurrency-Aware Enhanced Lightweight Cache Management Framework 10

Signature History Table (SHT)
• Keeping track of the re-

reference and PMC behaviors
of LLC blocks

• Associating accesses with PC
signature

Signature-Based Predictor (SBP)
• Making re-reference and PMC

predictions
• Performing cache insertions

and hit promotions

CARE: CONCURRENCY-AWARE CACHE MANAGEMENT

CARE: A Concurrency-Aware Enhanced Lightweight Cache Management Framework 10

Signature History Table (SHT)
• Keeping track of the re-

reference and PMC behaviors
of LLC blocks

• Associating accesses with PC
signature

Signature-Based Predictor (SBP)
• Making re-reference and PMC

predictions
• Performing cache insertions

and hit promotions

CARE

CARE: A Concurrency-Aware Enhanced Lightweight Cache Management Framework 12

•Making re-reference and PMC predictions
• CARE identifies the re-reference behavior of a cache block as
• High-Reuse if the related RC counter is 7
• Low-Reuse if the related RC counter is 0
• All other cache accesses are classified as Moderate-Reuse

• CARE predicts the impact of a cache block on performance as
• High-Cost if the related PD counter is 7
• Low-Cost if the related PD counter is 0

CARE - Management Policies

CARE: A Concurrency-Aware Enhanced Lightweight Cache Management Framework 13

• Improve data locality
• Keep High-Reuse cache blocks
• Give higher eviction priority to Low-Reuse blocks

• Take data concurrency into account
• For Moderate-Reuse blocks:
• Keep High-Cost cache blocks to reduce expensive misses
• Give higher eviction priority to the Low-Cost blocks

• 2-bit Eviction Priority Value (EPV)
• Reflect the eviction priorities of the cache block

More in the Paper

CARE: A Concurrency-Aware Enhanced Lightweight Cache Management Framework 14

• CARE’s Cache Management Policies
• Insertion policy
• Hit-promotion policy
• Victim selection

• Collaboration with Prefetching

• Dynamic Threshold Reconfiguration Mechanism
• Quantize PMC values to suit different workloads and different phases

Simulation Methodology

CARE: A Concurrency-Aware Enhanced Lightweight Cache Management Framework 15

• Champsim trace-driven simulator
• 45 single-core memory-intensive workload traces

• SPEC CPU2006 and CPU2017
• GAP

• Homogeneous and heterogeneous multi-core mixes
• Prefetcher

• L1D: Next-line prefetcher
• L2: IP-stride prefetcher

• Five state-of-the-art LLC management schemes
• LRU
• SHiP++ [Young+, 2nd Cache Replacement Championship, 2017]
• Hawkeye [Jain+, ISCA’16]
• Glider [Shi+, MICRO’19]
• Mockingjay [Shah+, HPCA’22]

Performance with Varying Core Count

CARE: A Concurrency-Aware Enhanced Lightweight Cache Management Framework 16

0.9

0.95

1

1.05

1.1

1.15

1.2

4-core 8-core 16-core

IP
C

No
rm

al
ize

d
to

 LR
U

LRU SHiP++ Hawkeye Glider Mockingjay CARE

0.9

0.95

1

1.05

1.1

1.15

1.2

4-core 8-core 16-core

IP
C

No
rm

al
ize

d
to

 LR
U

LRU SHiP++ Hawkeye Glider Mockingjay CARE

SPEC workloads

GAP workloads

10.3% 13.0% 17.1%

8.7% 10.6% 16.1%

Performance with Varying Core Count

CARE: A Concurrency-Aware Enhanced Lightweight Cache Management Framework 17

0.9

0.95

1

1.05

1.1

1.15

1.2

4-core 8-core 16-core

IP
C

No
rm

al
ize

d
to

 LR
U

LRU SHiP++ Hawkeye Glider Mockingjay CARE

0.9

0.95

1

1.05

1.1

1.15

1.2

4-core 8-core 16-core

IP
C

No
rm

al
ize

d
to

 LR
U

LRU SHiP++ Hawkeye Glider Mockingjay CARE

SPEC workloads

GAP workloads

10.3% 13.0% 17.1%

8.7% 10.6% 16.1%

CARE can accurately predict the cache
behavior of different workloads

CARE’s gain increases with core count

CARE consistently provides the highest
performance in all core configurations

Performance Improvement via PMC

CARE: A Concurrency-Aware Enhanced Lightweight Cache Management Framework 18

1

1.05

1.1

1.15

1.2

4-core 8-core 16-core

IP
C

No
rm

al
ize

d
to

 LR
U

M-CARE CARE

1

1.05

1.1

1.15

1.2

4-core 8-core 16-core
IP

C
No

rm
al

ize
d

to
 LR

U

M-CARE CARE

SPEC workloads

GAP workloads

4.2%
2.6%

8.3%

1.8%
3.0%

7.3%

M-CARE
• Extend the MLP-

based cost [Qureshi+,

ISCA’06] so it can work
under CARE

• Use MLP-based cost
to analyze data
access concurrency
and guide cache
management

Performance Improvement via PMC

CARE: A Concurrency-Aware Enhanced Lightweight Cache Management Framework 19

1

1.05

1.1

1.15

1.2

4-core 8-core 16-core

IP
C

No
rm

al
ize

d
to

 LR
U

M-CARE CARE

1

1.05

1.1

1.15

1.2

4-core 8-core 16-core
IP

C
No

rm
al

ize
d

to
 LR

U

M-CARE CARE

SPEC workloads

GAP workloads

4.2%
2.6%

8.3%

1.8%
3.0%

7.3%

M-CARE
• Extend the MLP-based

cost [Qureshi+, ISCA’06]
• The workflow of M-

CARE is similar to
CARE

• Use MLP-based cost
to analyze data access
concurrency and guide
cache management

The accurate analysis of data concurrency by PMC
provides CARE with a performance advantage

Overhead of CARE

CARE: A Concurrency-Aware Enhanced Lightweight Cache Management Framework 20

• 26.6 KB of total metadata storage per core
• Only simple tables
• 6.8 KB for concurrency awareness

Summary

CARE: A Concurrency-Aware Enhanced Lightweight Cache Management Framework 21

Pure Miss Contribution (PMC),
a comprehensive metric used to weigh the

performance cost of each cache miss

CARE considers locality, concurrency,
and overlapping to guide cache replacement decision

CARE outperforms state-of-the-art cache management schemes

Xiaoyang Lu, Rujia Wang, Xian-He Sun

CARE:
A Concurrency-Aware Enhanced Lightweight

Cache Management Framework

xlu40@hawk.iit.edu

FAQs

