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ABSTRACT
The widening performance gap between processors and memory
has become a major bottleneck in modern computing systems, high-
lighting the importance of cache performance. Traditional cache
replacement policies primarily exploit data locality but often ne-
glect the critical impact of concurrency. In fact, modern caching
techniques support concurrent data accesses by servicing multiple
accesses concurrently. Due to concurrency, the cost of cache misses
varies significantly, offering an opportunity to enhance cache re-
placement by prioritizing the reduction of costly misses.

In this paper, we introduce a perceptron-based concurrency-
aware miss cost predictor (CAMP) to enhance locality-based cache
replacement decisions. CAMP predicts the actual cost of cache
misses in environments with concurrent data accesses by analyz-
ing multiple correlated program features. Perceptron learning is
used due to its lightweight and adaptable nature, enabling accu-
rate and generalizable predictions of cache miss costs across di-
verse workloads. By integrating CAMP with a locality-based cache
replacement policy, we demonstrate that CAMP enhances cache
management for data-intensive applications by introducing concur-
rency awareness. Evaluations show that integrating CAMP with
SHiP++ outperforms LRU by 7.1% and 12.6% in 1-core and 4-core
systems on SPECworkloads, and by 10.7% in 4-core GAPworkloads,
surpassing state-of-the-art policies with only modest overhead.

KEYWORDS
Cache Replacement, Data Concurrency, Perceptron Learning

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GLSVLSI 2025, June 30–July 2, 2025, New Orleans, LA, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1496-2/2025/06
https://doi.org/10.1145/3716368.3735219

ACM Reference Format:
Yuping Wu, Xiaoyang Lu, Xiaoming Chen, Yinhe Han, and Xian-He Sun.
2018. Concurrency-Aware Cache Miss Cost Prediction with Perceptron
Learning. In Proceedings of Great Lakes Symposium on VLSI (GLSVLSI 2025).
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3716368.3735219

1 INTRODUCTION
Over the past three decades, the growing performance gap between
processors and memories has created a bottleneck where fast pro-
cessors are frequently stalled, waiting for slower memory [24]. This
disparity makes it crucial to enhance the performance of memory
systems to improve overall computing efficiency [20]. Caches play
a pivotal role in modern memory systems by mitigating memory
access latency through the utilization of both data locality and
concurrency [15, 17]. Beyond traditional cache hierarchies that uti-
lize data locality, concurrency has become a prevailing aspect of
cache design. Advanced caching techniques, such as multi-port [26]
and non-blocking caches [14], improve data access concurrency by
allowing multiple cache accesses to coexist within the same cycle.

The performance of caches is highly impacted by the underly-
ing cache replacement policy. Traditional cache replacement poli-
cies [8, 9, 23, 25] leverage data locality to reduce cache misses.
However, these locality-based replacement policies overlook data
concurrency, thereby failing to utilize concurrency in cache man-
agement. In caches with multiple concurrent accesses, the cost of
each cache miss varies [11, 15, 17]. The cost of a miss access can be
hidden by overlapping with hit accesses or amortized by overlap-
ping with parallel misses. Therefore, it is essential to account for
concurrency to fully assess the impact of cache misses on system
performance. Pure Miss Contribution (PMC) [15] is a metric used
to measure the cost of each outstanding miss access by considering
data access overlaps. There is potential to enhance locality-based
cache replacement policies by integrating concurrency considera-
tions, thereby tailoring the reduction of costly misses.

Previous studies [11, 15, 17] have recognized the importance of
concurrency and sought to mitigate costly cachemisses by retaining
critical blocks. These policies identify critical blocks by predicting
cache miss costs. However, these predictions rely on heuristics, and
their accuracy can vary significantly depending on the workloads
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and data access patterns. There is a need for intelligent techniques
that can accurately predict the actual cache miss cost across various
workloads. Perceptron learning [18] is a lightweight mechanism
that synthesizes information from multiple features to make accu-
rate predictions. Its adaptability allows it to dynamically adjust to
diverse workloads and access patterns [3, 4, 10, 12, 22], making it
ideal for predicting cache miss costs in environments with high
concurrency.

In this work, we propose CAMP (Concurrency-Aware Miss Cost
Predictor), a lightweight, concurrency-aware miss cost predictor
based on perceptron learning, designed to enhance locality-based
cache replacement policies. CAMP is not a replacement policy itself
but a general predictor that provides accurate miss cost predictions
across diverse workloads, enabling locality-based replacement deci-
sions to be tuned with concurrency awareness, thereby prioritizing
the retention of critical blocks. To summarize, we make the follow-
ing major contributions:

(1) We propose CAMP, a perceptron-based predictor for accu-
rate miss cost prediction in the environment with prevalent
concurrency. CAMP leverages multiple correlated program
features to ensure prediction accuracy.

(2) CAMP conducts online learning, adjusting its predictions
based on real-time feedback. This design enables CAMP to
adapt to diverse workloads and access patterns dynamically.

(3) CAMP is general and lightweight, making it practical to
integrate with any traditional locality-based policies, thereby
removing obstacles to its practical application.

(4) We develop a practical implementation of CAMP by using
SHiP++ [25] as the underlying locality-based cache replace-
ment policy. Our evaluations show that CAMP provides
an average of 90.2% prediction accuracy and, when inte-
grated with SHiP++, outperforms state-of-the-art policies
on memory-intensive workloads.

2 BACKGROUND AND MOTIVATION
2.1 Concurrent Memory Access Model
Modern memory systems exhibit high data concurrency due to
advanced cache techniques [6, 14, 26]. The Concurrent Average
Memory Access Time (C-AMAT) model was proposed [21] to eval-
uate the impact of concurrent data accesses on performance. In
C-AMAT, the cost of a cache request consists of two components:
1) base access cycles, representing the lookup time at the current
cache layer, and 2) miss access cycles, the additional cycles required
for misses. The C-AMAT model shows that miss access cycles can
be hidden or amortized by other concurrent accesses. As illustrated
in Figure 1, all miss access cycles of Access A are fully overlapped
with base access cycles from other accesses. If there is a miss access
cycle that does not overlap with any base access cycle, this cycle is
called a pure miss cycle. According to C-AMAT, the memory active
cycles on a memory layer are the cycles with memory activities.
Active pure miss cycles refer to the memory active cycles that only
contain pure miss cycles (e.g., cycles 5 to 7 in Figure 1), causing
memory stalls and performance degradation.

Pure Miss Contribution (PMC) [15] quantifies the cost of cache
misses by measuring their contribution to active pure miss cycles.
As illustrated in Figure 1, Access C and Access D contribute to three
active pure miss cycles (Cycles 5 to 7). The PMC value for Access

Access A

Access B

Access C

Access D

    1             2           3            4             5            6            7           cycle

base access cycles of hit/miss access

non-pure miss cycles of a miss access

pure miss cycles of a miss access

active non-pure miss cycles active pure miss cycles

Figure 1: Illustration of C-AMAT model and PMC.

C is 1, computed as 1
2 from Cycle 5 plus 1

2 from Cycle 6. The PMC
value for Access D is 2, computed as 1

2 from Cycle 5, 12 from Cycle
6, and 1 from Cycle 7.

By considering data access overlaps, PMC shows that not all
cache misses carry equal cost. If the PMC of each cache block can
be predicted and multiple cache victim candidates are provided
based on the underlying locality-based replacement policy, it be-
comes natural to replace the candidate block with the lowest pre-
dicted PMC. Therefore, accurate PMC prediction has the potential
to complement and enhance locality-based policies.
2.2 Locality-Based Replacement Policies
Belady’s OPT algorithm is the theoretically optimal locality-based
replacement policy [2], evicting the block with the longest reuse
distance to minimize misses. To make OPT implementable, various
locality-based replacement policies are designed to predict data
reuse. LRU assumes that recently used blocks are more likely to be
reused. RRIP [9] predicts reuse intervals using Re-Reference Predic-
tion Values (RRPV), which indicates the predicted time interval be-
fore the block will be referenced again. SHiP [23] (Signature-Based
Hit Predictor) uses a Signature History Counter Table(SHCT) to
predict and optimize the re-reference interval of caches, thereby re-
ducing cache misses. SHiP++ [25] enhances SHiP [23] by improving
cache insertion policies, refining SHCT training, and distinguishing
prefetch and demand accesses. Hawkeye [8] predicts reuse dis-
tances based on access history to classify blocks as cache-friendly
or cache-averse. Despite the growing complexity of data reuse pre-
diction in locality-based policies, they assume all misses have equal
cost and ignore the performance disparity caused by concurrent
cache miss access. However, this assumption does not always hold
true in modern memory systems with prevailing concurrent data
accesses, leading to suboptimal replacement decisions.
2.3 Concurrency-Aware Replacement Policies
With the widespread presence of concurrency in memory systems,
the community realizes the necessity of considering both locality
and concurrency for cache optimizations [11, 15–17]. Cost-sensitive
Replacement Algorithms [11] propose several LRU extension poli-
cies that consider various miss costs. However, the performance
depends on accurate prediction of miss cost, which can change dy-
namically and affect the effectiveness of the algorithm. SBAR [17]
utilizes the concurrency of miss accesses to classify cache misses
into isolated misses and parallel misses. SBAR assumes that iso-
lated misses are more costly to performance than parallel misses.
SBAR uses the Memory Level Parallelism (MLP cost) to guide re-
placement decisions, but MLP costs can vary significantly across
different program phases, affecting prediction accuracy. CARE [15]
is a standalone replacement policy that considers both data reuse
and PMC. However, its PMC predictions rely on heuristic, counter-
based observations, assuming a strong correlation between PMC
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and a single feature: the PC. The effectiveness of CARE is limited
for workloads and data patterns exhibiting significant PMC varia-
tions, which restricts its overall performance. Therefore, there is an
urgent need for an accurate, concurrency-aware cache miss cost
predictor that can adapt to diverse data access patterns and work-
loads, complementing locality-based policies to provide optimized
cache replacement decisions.

2.4 Perceptron Learning in Architecture Design
Perceptron learning [18] is a lightweight mechanism that synthe-
sizes decisions by combining multiple input features. It operates
by assigning weights to these features and predicting outcomes
based on whether the weighted sum exceeds a threshold. This
simple yet effective approach enables perceptrons to dynamically
adapt to changing patterns, making them well-suited for decision-
making tasks in computer architecture. Perceptron learning has
been widely applied in memory optimization, particularly in cache
reuse prediction [13, 22], prefetch filtering [4], and off-chip memory
access prediction [3, 10]. These studies demonstrate that perceptron
learning is adaptable, lightweight, and hardware-efficient, making
it ideal for cache optimizations. Building on these strengths, we
design CAMP, a perceptron-based PMC predictor that leverages
multiple correlated program features to enhance PMC prediction
accuracy. By integrating PMC-aware insights, CAMP refines cache
replacement decisions, effectively balancing locality and concur-
rency effects.

3 CAMP DESIGN AND ARCHITECTURE
In this section, we introduce CAMP, a concurrency-aware perceptron-
based cachemiss predictor that provides accurate PMC range predic-
tions for each cache block. CAMP dynamically learns correlations
between multiple program features, enabling it to estimate cache
miss costs more effectively than traditional heuristics. By incorpo-
rating concurrency-aware insights into locality-based replacement
policies, CAMP improves cache management for data-intensive
applications. While CAMP is general and applicable to any locality-
based policy, we implement and evaluate it using SHiP++ [25] as
our underlying policy.

3.1 PMC Measurement and Implementation
The Miss Status Holding Register (MSHR) [14] is used to track both
the number of in-flight misses and the number of miss access cycles
for each outstanding miss. We integrate the measurement of PMC
into the MSHR entry. Suppose a miss access has 𝑛 pure miss cycles.
The PMC value for a specific miss access is calculated as follows:

𝑃𝑀𝐶 =

𝑛∑︁
𝑖=1

1
𝑁𝑖

, (1)

where 𝑁𝑖 is the number of outstanding misses in the 𝑖-th pure
miss cycle for the miss access. The value of 𝑁𝑖 is determined by
monitoring the number of valid MSHR entries at each cycle. This
integration provides a straightforward way to measure PMC in
real-time.

Figure 2 illustrates the PMC measurement structure. The Pure
Miss Detector (PMD) checks whether the current memory cycle
is an active pure miss cycle. A 1-bit PMD flag is updated every
cycle to indicate this status, and once an active pure miss cycle is
detected, the PMD flag is set to 1. The MSHR Occupation Counter

MSHR Occupation CounterMSHR

V Block Address Issued Target Info. PMC

V Block Address Issued Target Info. PMC

... PMC Adder

Pure Miss  

Detector

PMC Adder

Lookup Table

PMC Measurement

LLC

V Tag Data

V Tag Data

. . . 

V Tag Data

set PMD =0/1 

with/without base access covers

...

Figure 2: PMC Measurement Structure.
Table 1: Size of selected feature.

Feature Size
Address [19 : 26] 256 × 3 bits
Address trace [7 : 15] 512 × 3 bits
PC [17 : 25] 512 × 3 bits
PC trace [25 : 33] 512 × 3 bits
PC ⊗ address [42 : 50] 512 × 3 bits
Total 0.84 KB

then counts the number of outstanding cache misses, denoted as 𝑁 .
To compute the PMC value for each outstandingmiss, a PMC counter
is assigned to each MSHR entry. During each active pure miss
cycle, the PMC counters in all valid MSHR entries are incremented
by 1

𝑁
concurrently. The number of MSHR entries determines the

maximum value of 𝑁 . Since the number of MSHR entries is limited
(64 in our evaluation), 𝑁 is an integer ranging from 1 to 64. To avoid
complex floating-point computations, we precompute all possible
values of 1024

𝑁
and store them in a rounded integer format in a

PMC Adder Lookup Table. The PMC Adder accumulates the sum as
1024×PMC, and the final result is bit-shifted right by 10 to compute
the actual PMC.

Figure 3 shows the distribution of PMC values across various
SPECworkloads, revealing significant variation among benchmarks.
For example, the PMC values of 473 and 649 are concentrated in
higher intervals, whereas those of 433 and 623 tend to be lower.
Meanwhile, 603 and 605 exhibit a more uniform distribution. This
variation in PMC distribution highlights that cache misses have
diverse impacts on performance, suggesting opportunities to prior-
itize mitigating misses with high PMC values.
3.2 CAMP Design and Workflow
We design CAMP using a perceptron learning model to predict
whether the PMC value of a cache miss exceeds the average PMC
value. CAMP is organized as a collection of weight tables, each
corresponding to a selected feature. These weight tables store val-
ues using 3-bit saturating counters, representing the correlation
between the features and the predicted PMC interval. The size of se-
lected features are listed in Table 1. The overall workflow of CAMP,
including its prediction mechanism, is illustrated in Figure 4.

On an LLC miss, CAMP first trains its model and then predicts
the PMC interval of the incoming block. During training, CAMP
extracts a set of program features from the current load request
and selects the most relevant bits of each feature to index the cor-
responding weight tables. It then retrieves and sums the associated
weights to compute a cumulative perceptron weigh (𝑊𝑡𝑟𝑎𝑖𝑛). This
value is used to predict whether the PMC value of the block is
greater than the average PMC value. The predefined threshold, de-
noted as 𝜃 , guides the prediction decision. If𝑊𝑡𝑟𝑎𝑖𝑛 < 𝜃 , the PMC
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Figure 3: Coarse-grained PMC distribution. (The x-axis represents the PMC value intervals in cycles: 1 = 0-39 cycles; 2 = 40-79
cycles; 3 = 80-179 cycles; 4 = 180+ cycles.)
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Figure 4: Workflow of CAMP.
Table 2: Program features for PMC prediction.

Feature Description
Address The virtual address of current access
Address trace The XOR value of last-4 addresses
PC Program Counter of current access
PC trace The XOR value of last-4 PC
PC ⊗ Address The XOR value of PC and address
page number The page number of current access
page offset The page offset of current access
cache set number The cache set number of current access

of the incoming block is predicted to be lower than the average
PMC value. Otherwise, the PMC value is classified as high. We
tested various thresholds and ultimately set 𝜃 to 18. As discussed in
Section 3.1, the actual PMC value of the block is measured in par-
allel. CAMP compares this measured PMC with the average PMC
to verify the prediction’s correctness. If the prediction is incorrect,
CAMP updates the weight values for each feature: if the actual PMC
is greater than the average PMC, the weights are incremented, oth-
erwise, the weights are decremented. Once training is completed,
CAMP recomputes the cumulative perceptron weight (𝑊 ) based on
the updated tables and predicts the future PMC interval, assessing
the criticality of the incoming block. Each cache block is configured
with a 1-bit PMCL flag, which records whether the predicted PMC
is above the average value. PMCL is set to 1 if the predicted PMC
of the cache access exceeds the average PMC. In practical imple-
mentation, once the weight tables are updated, the new weights
are retrieved directly without re-indexing, eliminating redundant
lookup overhead. We dynamically update the average PMC value
over a fixed number of memory accesses. The measurement interval
is set to half of the LLC capacity, meaning the average PMC update
occurs after half of the LLC blocks are evicted.

3.3 Selection of Features
Unlike simple counter-based schemes, perceptron learning dynam-
ically adapts across workloads by leveraging multiple features and
capturing their correlations, resulting in improved prediction accu-
racy. The selection of correlated features is critical for designing an
accurate PMC predictor. The feature selection process is performed
offline during the design phase of CAMP. We evaluate a range of

SET S

SET 1

Cache SET 0

V Tag Data

V Tag Data

V Tag Data

…
V Tag Data

Candidate victims (chosen 

by locality)

 Smaller Predicted PMC victim

(chosen by concurrency)

…
PMCL=1

PMCL=1

PMCL=0

PMCL=0

Figure 5: Integrating CAMP with SHiP++.

candidate program features that may influence PMC and analyze
their correlation by measuring their individual prediction accuracy,
as detailed in Table 2. To refine the selection, each program fea-
ture is partitioned into multiple subcomponents, represented as
bit ranges from 𝑆 to 𝐸 ([𝑆 : 𝐸]). The prediction accuracy of each
subcomponent is evaluated independently to determine its contri-
bution to PMC prediction. The highest-performing subcomponent
is selected as the representative of its corresponding feature. Finally,
only representatives with a prediction accuracy exceeding 70% are
retained as final predictive features, as summarized in Table 1.

Address values tend to cluster within contiguous address spaces,
such as arrays and vectors, particularly within a given program
phase. Accesses with similar address bits often exhibit similar data
concurrency patterns. PC identifies the instruction responsible for
initiating a data load or store. In many programs, memory accesses
initiated by the same PC exhibit similar concurrency characteristics,
making PC a strong feature for PMC prediction. Address trace
and PC trace capture longer-term access patterns across different
program phases, allowing the predictor to make more accurate
predictions. The combined feature PC ⊗ Address considers both PC
and address together, providing fine-grained contextual information
that captures the interaction between program behavior and PMC
characteristics.

3.4 Integrating CAMP with SHiP++
Figure 5 illustrates how CAMP cooperates with locality-based cache
replacement policies to make replacement decisions. When the
cache needs to select a block for replacement, we first identify can-
didate victims based on locality. Then, CAMP is used to choose
the block with the PMCL-bit set to 0 among candidates exhibiting
poor locality for eviction. In this implementation, both locality and
concurrency information are considered when making eviction
decisions, providing a more comprehensive view of cache man-
agement. Note that the design of CAMP is general and can be
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Table 3: Simulator configurations.
Processor 1-core and 4-core, 4GHz, 8-issue width, 352-entry ROB, 128 Load Queue,

72 Store Queue, Perceptron branch predicton [12]
L1 Cache private, 32 KB I/D-cache per core, 8-way, 4-cycle latency, 8/16-entry

MSHR, LRU, next-line prefetcher
L2 Cache private, 256 KB per core, 8-way, 8-cycle latency, 32-entry MSHR, LRU,

IP-stride prefetcher
L3 Cache shared, 2MB per core, 16-way, 20-clcle latency, 64-entry MSHR
DRAM 4 GB, tRP = 15ns, tRCD=15ns, tCAS = 12.5ns

Table 4: Evaluated workloads.
SPEC06 401.bzip2, 410.bwaves, 429.mcf, 433.milc, 434.zeusmp, 437.leslie3d,

450.soplex, 459.GemsFDTD, 462.libquantum, 473.astar, 481.wrf,
482.sphinx3, 483.xalancbmk

SPEC17 603.bwaves_s, 605.mcf_s, 607.cactuBSSN_s, 623.xalancbmk_s, 649.fo-
tonik3d_s, 654.roms_s, 657.xz_s

GAP bc, bfs, sssp, tc

integrated into most locality-based cache replacement policies us-
ing the same workflow. For other locality-based cache replacement
policies, CAMP can also leverage the PMCL-bit in a similar way.

We present a case study implementation of CAMP, which pro-
vides the predicted PMCL for each incoming block to introduce
concurrency awareness into the cache replacement decisions of
locality-based policies. In this case, we select SHiP++ [25] as the
underlying locality-based policy. SHiP++ is a well-designed locality-
based cache policy that predicts RRPVs for cache replacement.
When an incoming block arrives, SHiP++ iterates through the cor-
responding cache set and selects the first cache block encountered
with the maximum preset RRPV value as the victim. After integrat-
ing with CAMP, cache eviction further incorporates the PMCL-bit,
ensuring that among blocks with poor locality, the one with the
lowest predicted PMC is prioritized for eviction.

4 EXPERIMENT AND RESULTS
4.1 Methodology
We evaluate CAMP using the ChampSim [7] simulator. Table 3
details our evaluation system configuration. To better align with
practical cache architectures, we incorporate a next-line prefetcher
at L1 and an IP-stride prefetcher at L2. We select LRU as the baseline
for performance comparison and evaluate CAMP as an enhance-
ment to SHiP++ [25]1, analyzing its impact on cache management
compared to three state-of-the-art LLC cache replacement policies:
SHiP++ [25], Hawkeye [8], and CARE [15]. We evaluate CAMP
using 20 memory-intensive workloads from SPEC 2006 [19] and
SPEC 2017 [5], along with 4 from GAP [1], all of which have at
least 1 LLC miss per kilo instruction (MPKI) under the LRU policy,
as shown in Table 4. For SPEC workloads in a 4-core system, we
evaluate performance on both homogeneous and heterogeneous
workload mixes. For homogeneous mixes, we run 4 identical copies
of the sameworkload. For heterogeneousmixes, we randomly select
4 different workloads per core and generate 25 mixed workloads.
For GAP workloads, we evaluate performance using homogeneous
mixes of the same workloads in a 4-core system.

4.2 Prediction Accuracy of CAMP
We evaluate the efficiency of CAMP by measuring the accuracy
of PMC predictions across homogeneous mixes of 20 memory-
intensive SPEC workloads in a 4-core system. Figure 6 shows that
1In Section 4.3, ‘CAMP’ refers to the integration of CAMP with SHiP++, where CAMP
enhances SHiP++ by incorporating PMC-aware predictions.
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Figure 8: Normalized IPC for 4-core (heterogeneous mixes)
on SPEC workloads.

the prediction accuracy exceeds 84.4% for all workloads, with an
average of 90.4% and a peak accuracy of 97.5%. These results demon-
strate that CAMP reliably predicts whether the PMC value exceeds
the average, effectively capturing data access concurrency and pro-
viding a strong foundation for LLC management.

4.3 Performance Comparison
Figure 7 shows the speedup for 1-core and 4-core systems on SPEC
workloads as listed in Table 4. In the 1-core system, CAMP (in-
tegrate with SHiP++) outperforms LRU by 7.1%, while Hawkeye,
CARE and SHiP++ achieve average performance improvements
of 4.6%, 6.6% and 6.5%, respectively. By incorporating both data
locality and concurrency, CAMP surpasses locality-based policies
like SHiP++ and Hawkeye. Compared to CARE, which also consid-
ers data concurrency in LLC management but relies on heuristic,
counter-based PMC prediction, CAMP offers a significant advan-
tage with its adaptive PMC prediction. In the 4-core system with
SPEC homogeneous workload mixes, CAMP outperforms LRU by
12.6%, while Hawkeye, CARE and SHiP++ improve performance
by 7.2%, 11.2%, and 11.1%, respectively on average. We observe that
CAMP exhibits significant advantages as the number of CPU cores
increases, benefiting from higher data concurrency in multi-core
systems.

Figure 8 shows the normalized weighted speedup over LRU for 4-
core heterogeneousmixedworkloads on SPECworkloads.Weighted
speedup is a widely used metric for evaluating shared cache per-
formance [8, 15]. CAMP improves performance over LRU by 11.0%,
while SHiP++, Hawkeye, and CARE improve performance by 9.1%,
5.4%, and 4.4%, respectively. CAMP outperforms all competing poli-
cies on 22 of the 25 mixed workloads and is slightly sub-optimal on
the remaining three. These results demonstrate CAMP’s robustness
in handling complex multi-core workloads.

Figure 9 shows the normalized IPC among homogeneous GAP
workloads in a 4-core system. CAMP outperforms LRU by 10.7%,
while Hawkeye, CARE and SHiP++ achieve performance improve-
ments of 3.7%, 10.1%, and 7.4%, respectively. We observe that CAMP
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Figure 9: Average Speedup for 4-core (homogeneous mixes)
on GAP workloads.

Table 5: Hardware cost of CAMP.
Portion Size Used for
PMCL 4KB Record whether predicted PMC is large
Weight tables 0.84KB Perceptron training and prediction
PMC adder lookup table 0.25KB PMC measurement

Total: 5.09KB for concurrency awareness
Table 6: Hardware costs for different replacement policies.

Replacement Policy Concurrency-Aware Total Cost
LRU No 16KB
SHiP++ [25] No 16KB
Hawkeye [8] No 30.94KB
CARE [15] Yes 26.64KB
CAMP+SHiP++ Yes 21.09KB

and CARE significantly surpass the locality-based SHiP++ and
Hawkeye on graph workloads due to their consideration of data
concurrency. Integrating CAMP significantly enhances SHiP++,
improving the performance of SHiP++ by 3.3% and making it more
adaptive to both locality and concurrency effects. This enhance-
ment allows it to further surpass the concurrency-aware CARE,
demonstrating the effectiveness of CAMP.

4.4 Hardware Overhead of CAMP
Table 5 shows the hardware cost of CAMP for a 16-way 2MB LLC.
For each cache block allocated in the LLC, we assign a 1-bit PMCL,
resulting in a total of 4KB. For the perceptron learning, we utilize
a 3-bit counter for each feature weight table, with a total cost of
0.84KB. To measure the actual PMC of each incoming cache block,
a PMC adder lookup table is used to avoid complex computations,
costing 0.25KB in total. Therefore, CAMP requires only 5.09KB
for PMC measurement, perceptron training, and PMC predictions,
which is lightweight at just 0.25% of a 2MB LLC. Since CAMP is
a predictor rather than a full replacement policy, it is designed to
be lightweight, making it practical for real-world integration with
existing locality-based policies.

To put this into perspective, we compare the hardware costs of
all state-of-the-art policies, as shown in Table 6. The integration
with SHiP++ adds an additional 16KB to the hardware cost, bringing
the total implementation cost to 21.09KB. This incurs significantly
lower overhead than Hawkeye and CARE while delivering more
stable and efficient cache management across diverse workloads.
This demonstrates that CAMP’s lightweight design and efficient
PMC-aware predictions make it a highly practical and cost-effective
enhancement for modern locality-based cache replacement policies.

5 CONCLUSION
In this paper, we introduce CAMP, a concurrency-aware cache
miss cost predictor. CAMP accounts for all types of data access
overlaps and employs lightweight perceptron learning to provide
accurate miss cost predictions for each incoming cache block. We
present a case study implementation of CAMP using SHiP++ as

the underlying locality-based replacement policy. Extensive eval-
uations show that by fully incorporating both data locality and
concurrency in cache management, CAMP effectively improves
replacement decisions and demonstrates strong potential for data-
intensive workloads.
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