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Abstract—Integrating processing-in-memory (PIM) with GPUs

accelerates large language model (LLM) inference, but existing

GPU-PIM systems encounter several challenges. While GPUs

excel in large general matrix-matrix multiplications (GEMM),

they struggle with small-scale operations better suited for PIM,

which currently cannot handle them independently. Additionally,

the computational demands of activation operations exceed the

capabilities of current PIM technologies, leading to excessive data

movement between the GPU and memory. PIM’s potential for

general matrix-vector multiplications (GEMV) is also limited by

insufficient support for fine-grained parallelism. To address these

issues, we propose Pyramid, a novel GPU-PIM system that opti-

mizes PIM for LLM inference by strategically allocating cross-

level computational resources within PIM to meet diverse needs

and leveraging the strengths of both technologies. Evaluation

results demonstrate that Pyramid outperforms existing systems

like NeuPIM, AiM, and AttAcc by factors of 2.31×, 1.91×, and

1.72×, respectively.

Index Terms—Large language models, Processing-in-memory

I. LLM INFERENCE IN GPU-PIM SYSTEMS

L
ARGE language models (LLMs) have emerged as pow-
erful machine learning tools capable of solving many

natural language processing tasks. As shown in Fig. 1, the
inference process of LLMs can be divided into two conceptual
stages: summarization and generation. In the summarization
stage, token embedding converts input tokens into dense
vectors, which are then refined by transformer decoder blocks
to process the embeddings and capture long-range depen-
dencies. This phase ends with generating the first token. In
the generation stage, the transformer decoder blocks continue
processing embeddings of previously generated tokens and
transform these embeddings into subsequent output tokens.
The entire inference process relies heavily on the transformer
decoder blocks, which are critical for capturing context and
relationships across the sequence. Each transformer decoder
block consists of three primary layers: (1) query-key-value
(QKV) generation, (2) multi-head attention (MHA), and (3)
a set of feed-forward networks (FFNs). These layers involve
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Fig. 1. Illustration of LLM inference.

intensive matrix operations, including general matrix multipli-
cation (GEMM) and matrix-vector multiplication (GEMV).

Large-scale GEMM operations are ideal for GPUs due
to their parallel compute capabilities. In contrast, GEMV
operations have lower arithmetic intensity, resulting in under-
utilized GPU resources [1]. PIM technology, which is effective
for memory-bound tasks [2], offers promise for GEMV opera-
tions. Current GPU-PIM systems for LLM inference optimize
GEMV in the MHA layer during generation [3], [4]. However,
several challenges remain that hinder the full potential of PIM
in accelerating LLM inference.

High Time to First Token (TTFT). Existing GPU-PIM
studies [1] offload all GEMM operations to GPU. However,
for short requests, GPUs need to batch multiple requests to
ensure efficient utilization. The batching process introduces a
delay as short requests must wait until there are enough to
form a predefined input matrix before being processed. This
delay challenges the reduction of TTFT [5] which is crucial
because it directly impacts user experience.

Heavy Data Movement. LLMs also rely heavily on
element-wise activation operations, such as the ubiquitous
Softmax and GeLU, which are compute-intensive and signif-
icantly contribute to the overall computational load of LLM
inference. Existing PIM architectures limit their compute capa-
bilities to near-bank processing units, forcing these activation
operations to be offloaded to GPU. This offloading incurs
significant data movement overheads

Coarse Parallelism. Most existing works [1], [3], [4] focus
on offloading GEMV operations in PIM but do not thoroughly
explore the parallelism potential that PIM can offer. These
studies typically concentrate on near-bank computational units,
achieving parallelism primarily at the bank level. However,
each bank contains multiple subarrays, and optimizing paral-
lelism at this finer granularity remains underexplored.

To address these challenges, we propose Pyramid, a GPU-
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Fig. 2. Illustration of Pyramid computing resource configuration and corre-
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PIM system for LLM inference with an intelligent cross-
level PIM architecture . It integrates compute resources across
memory levels in PIM, boosting PIM-side power with minimal
hardware overhead, rather than relying heavily on GPUs.

II. PYRAMID ARCHITECTURE

A. Overview

Pyramid is an heterogeneous GPU-PIM systems to accel-
erate LLM inference across a spectrum of operations. As
shown in Fig. 2, Pyramid fully leverages three levels of
computing resources within PIM. First, small systolic arrays
are deployed in ranks to support GEMM operations with short
requests. Second, lookup table (LUT)-based modules provide
fast activation calculations at the bank group level. Third,
parallel MAC units in banks, optimized with fine-grained
subarray parallelism, further accelerate GEMVs.

As illustrated in Fig. 3, Pyramid comprises 8 DRAM
channels. Each channel contains 2 ranks, with 4 bank groups
per rank, 4 memory banks per bank group, and 32 subarrays
per bank. This hierarchical organization allows Pyramid to
optimize processing at multiple levels, ensuring that each type
of operation in LLM inference is handled by the most ap-
propriate hardware resource. Pyramid introduces three distinct
types of processing units: RankPIM, BGPIM, and BankPIM,
each corresponding to different levels of the memory hierarchy
within PIM (rank, bank group, and bank, respectively).

RankPIM is equipped with 4 small 16⇥16 systolic arrays,
specifically designed to accelerate small-scale GEMM oper-
ations frequently encountered in LLM inference. By deploy-
ing RankPIM, Pyramid can directly execute these operations
belong to short request inference in parallel at PIM side,
eliminating the need for batching that is typically required
for GPU processing, which is critical for reducing TTFT.

BGPIM incorporates LUT-based modules that efficiently
handle activation functions in bank group level. These modules
incorporate with an interpolation module, and an arithmetic
module, as illustrated in Fig. 3. By deploying BGPIM, these
operations can be executed on the PIM side, significantly
reducing data movement between GPU and memory.

BankPIM features a novel configuration of multiplication
accumulator (MAC) units that exploit subarray-level paral-
lelism. This configuration is effective for accelerating GEMV
operations, which are prevalent in the attention mechanisms
of LLMs and benefit significantly from the fine-grained par-
allelism provided by PIM.

Pyramid strategically increases PIM computational power
from the innermost levels to the outermost levels. It effectively
handles small-scale GEMM operations, activation functions,
and GEMV operations, all within the PIM subsystem. To
seamlessly integrate the system with the existing architecture,
we introduce several CUDA-like instructions in the ISA to
facilitate task offloading between PIM and GPU.

B. Workflow of Decoder Blocks

Unlike traditional GPU-based or existing PIM-GPU sys-
tems, where short requests are delayed to accumulate into
batches for efficient GPU processing, Pyramid introduces a
novel dataflow for executing decoder blocks that accommo-
dates requests of varying lengths. During both single-batch and
multi-batch summarization stages, the system first performs
a GEMM operation scale assessment before the QKV gen-
eration. This step determines whether the upcoming GEMM
operations should be processed by the PIM or offloaded to
the GPU, based on a predefined threshold indicated by the
roofline model. The threshold for GEMM scale is determined
by the request length (number of tokens) and the roofline
model, which together establish the GEMM execution thresh-
old before runtime. For instance, in GPT-3 175B, when the
request exceeds 192 tokens, the GEMM operation becomes
compute-bound, making GPU execution more suitable. Other-
wise, the GEMM operation becomes memory-bound, making
PIM execution more efficient. If the GEMM operations in
QKV generation are better suited for the GPU, all subsequent
operations, including those in QKV generation, MHA, and
FFNs, are offloaded to the GPU. Otherwise, the small-scale
GEMM operations involved in QKV generation and MHA are
offloaded to the PIM. In addition, a second GEMM operation
scale assessment is then performed before the FFN layer
to decide whether the subsequent GEMM operations should
continue on the PIM or be offloaded to the GPU.

For the generation stage, the workflows differ between
single-batch and batched requests. In the case of a single batch,
since only one new token is generated at a time, the matrix
operations involved are GEMV operations, all offloaded to
PIM. For batched requests, although each individual request
generates only one token at a time, multiple tokens can be
generated across the batch. This allows for the reuse of
weight matrices, enabling GEMM operations in the QKV
generation layer and FFN layer. Before executing these steps,
it is necessary to assess whether the GEMM operations should
be processed by the GPU or PIM. However, in the MHA layer
of the multi-batch scenario, where no matrices can be reused,
the operations remain GEMV-based and are most efficiently
executed on the PIM.

This tailored workflow management in Pyramid, which
distinguishes it from traditional GPU-PIM systems for LLM
inference, enables the system to respond more promptly to
both short and long requests, thereby enhancing its ability
to deliver responsive and high-performance LLM inference
capabilities.
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Fig. 3. Organization of the PIM Subsystem in Pyramid Architecture.
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Fig. 4. Activation functions utilizing exponential functions are computed
using LUTs, with linear interpolation to increase accuracy.

C. RankPIM: Rank-Level Systolic Arrays

To enhance LLM inference performance within the GPU-
PIM system, particularly for short requests, we propose the
integration of RankPIM into the rank buffer. As illustrated in
Fig. 3, the primary enhancement involves the incorporation of
four 16 ⇥ 16 systolic arrays, specifically designed to execute
small-scale GEMM operations in parallel. This hardware ex-
tension leverages the high internal bandwidth of PIM, offering
a significant boost in processing efficiency.

D. BGPIM: Bank Group-Level LUT-Based Modules

Activation operations can be broadly categorized into those
that utilize exponential functions (e.g., Softmax, GeLU, Tanh,
and Sigmoid) and those that do not (e.g., ReLU and Leaky
ReLU). We classify activation functions that use exponential
functions as complex activation functions. Due to the limited
computational power of current PIM architectures, executing
these complex activation functions typically requires offload-
ing to GPUs, resulting in significant data movement between
the GPU and memory. Pyramid addresses this limitation by
enabling the execution of complex activation functions directly
within PIM through BGPIM, utilizing LUT-based modules. To
balance memory overhead and accuracy, we use interpolation
for values not present in the lookup table and store only
exponential function values. Fig. 4 illustrates this process.

E. BankPIM: Bank-Level MACs with Subarray Parallelism

As shown in Fig. 5(a), we place the MAC unit beside
the bank row buffer. To achieve subarray-level parallelism,
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(b) Subarray access controller.

modifications are made to the subarray controller circuit to
manage the transition of data from subarry row buffers to bank
row buffer, as shown in Fig. 5(b). A specific row is connected
to the subarray row buffer upon activation by the row address
and subarray ID, and it connects to the bank row buffer only
when designated by the subarray selection signal. This design
enables simultaneous activation of multiple subarrays within a
bank, with temporary storage in subarray row buffers. Building
upon this, Pyramid effectively reduces the number of DRAM
row activations required for GEMV operations.

III. EVALUATION

A. Methodology

We develope an in-house simulator by modifying Ramula-
tor [6] to evaluate the performance of both GPU systems and
GPU-PIM systems. Ramulator is a DRAM simulator, has been
cross-validated with real DRAM devices and is extensively
used in prior research for PIM evaluations [7]. The detailed
simulation configuration of Pyramid is presented in Table I.

B. Overall Performance

We compare Pyramid with state-of-the-art GPU-PIM sys-
tems for LLM inference, including NeuPIM [1], AiM [3], and
AttAcc [4], as shown in Fig. 6. The baseline for comparison
was set as GPU+PIM, a PIM-enabled GPU baseline where
only the GEMV operations in MHA layers are mapped to
PIM, while all other computations are performed on the GPU.
The execution times of the QKV, MHA, and FFN layers are
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TABLE I
SIMULATED PIM CONFIGURATIONS.

GPU Nvidia A100-PCIe 80G

PIM System

GDDR6: Channel=8; Ranks/Channel=2; BGs/Rank=4;
Banks/BG=4; Subarrays/Bank=32;

Capacity/Channel=4GB; Frenquency=1GHz;
Timing

Constraint
tRCD=12ns, tRP=12ns, tCCD=1ns, tWR=12ns,tRFC=445ns

Energy and

Latency

Parameter

DRAM ACT energy=2 nJ, DRAM RD/WR=6.48 pJ/bit,
BF16 adder=0.9pJ/Op, BF16 mult=2.4pJ/Op

PIM Processing

Units

RankPIM: 4 16x16 systolic arrays per Rank, 1GHz
BGPIM: Interpolation and Arithmetic Modules per BG

BankPIM: MAC per Bank, 1GHz

measured using timestamps in our simulator. Communication
overhead is evaluated via GPU-PIM data transfers, using a
PIM response model to calculate delays for accurate modeling.

We used Lin and Lout to represent the input and output
lengths of a request, respectively. We evaluated the LLM
inference decoder execution time across these five GPU+PIM
systems with Lin set to 128 and 2048. For short requests
with Lin=128, Pyramid outperformed all four other GPU+PIM
systems. Specifically, Pyramid reduced execution time by
55.3%, 47.6%, 48.3%, and 47.5% on average compared to
baseline, NeuPIM, AiM, and AttAcc, respectively. These
performance improvements are primarily due to Pyramid’s
capability to handle end-to-end inference on the PIM side
for short requests, reducing communication overhead and data
movement, particularly for LUT-based activation functions.

For long requests with Lin=2048, Pyramid continued to
demonstrate significant performance gains, reducing execution
time by 57.6%, 48.5%, 47.1%, and 35.2% on average com-
pared to baseline, NeuPIM, AiM, and AttAcc, respectively.
Pyramid’s workflow is designed to accommodate requests of
varying lengths, allowing longer requests to be efficiently
accelerated by the GPU.

C. TTFT Optimization

We evaluate the average TTFT across different model sizes
to validate the effectiveness of our PIM implementation,
specifically its support for small-scale GEMM computations.
The average TTFT results are presented in Figure 7, with
all values normalized to the baseline. The results demonstrate
that Pyramid achieves significantly shorter average TTFT for
requests of varying lengths, especially for smaller model sizes.
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Fig. 7. Normalized TTFT comparison across different model sizes, evaluated
with 1000 short requests (Lin:128, Lout:1) and 1000 long requests (Lin:2048,
Lout:1).

D. Power and Area Overhead

Pyramid contributes an additional overhead of 12.7% of a
DRAM chip under 32nm process, which typically measures
around 100 mm2 [7]. The area overhead of RankPIM is 3.07
mm2. And BGPIM consumes 0.012 mm2. BankPIM with 9.62
mm2 overhead. Furthermore, the power overhead of Pyramid
is 47.6 mW, which is considerably lower compared with
traditional GPU-PIM system.

IV. CONCLUSION

In this paper, we introduce Pyramid, an innovative GPU-
PIM system designed to optimize LLM inference. Pyramid
integrates cross-level processing units within PIM. The system
is carefully tailored to reduce TTFT, minimize data move-
ment, and enhance parallelism. Our comprehensive evaluations
demonstrate that Pyramid consistently outperforms existing
solutions, highlighting its significant potential in advancing
efficient LLM inference workloads.
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