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Sparse Matrix-Matrix Multiplication (SpMM)

SpMM is widely used in machine learning and
computation fields
* There is an increasing demand for higher performance

and efficiency in SpMM
Sparse Matrices have various sparse patterns

e Various matrix sizes, densities, and distribution of
non-zeros
 Significant challenges for conventional cache-based
computing architectures

Limitations of Current SpMM Accelerators

There are three common limitations faced by current
SpPMM accelerators:
* Fixed Execution Flow: A fixed execution flow is hard
to adapt different sparse patterns
* Overlooking the Importance of Concurrency: SpMM
operations often lead to concurrent cache line
demands; even a single cache miss can stall the
processing chain
 On-Chip Cache does not Incorporate Non-Blocking
Features: A single cache miss causes delays in
subsequent accesses

Adaptive Execution Flow

Detect Sparse Patterns:
* Adjacent rows with similar distributions of non-zero

elements tend to have a stable row length (number of
non-zero elements)

Partition rows into bands based on changes in row
length

Rows in the same band have a similar sparse
pattern

Select Condensing Degrees:
« Large band - Determine the optimal condensing degree

via a sampling phase
Small band - Apply a moderate condensing degree
directly

Concurrency-Aware Cache Replacement

Use the Next Request Distance (RD) to capture the
reuse distance of the rows

Use Fiber Density (FD) to capture the number of cache
lines in the corresponding row

Select the cache line with the highest combined sum
of RD and FD for eviction

Allow all cache lines of a row to be accessed
concurrently without any cache misses

Our Solution: ACES
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Adaptive Execution Flow
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Aggressive Condensing

Moderate Condensing

» Consider four processing elements, each performing
scalar-vector multiplication

« Each element (scalar) is taken from Matrix A and is
multiplied with the corresponding row (vector) of Matrix B

 Condensing degree impacts the execution flow of
SpMM
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Normalized Speedup

Non-Blocking (NB) Buffer

» Handle multiple outstanding data requests concurrently
* Allow the cache to issue new memory requests even

when previous ones are still being serviced
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* ACES outperforms all other SpMM accelerators
» 25.5% over SIGMA, 8.9x% over SpArch, and 2.1x over
SPADA :
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