
ACES: Accelerating Sparse Matrix Multiplication with
Adaptive Execution Flow and Concurrency-Aware

Cache Optimizations
Xiaoyang Lu∗

xlu40@hawk.iit.edu
Department of Computer Science,
Illinois Institute of Technology

USA

Boyu Long∗
longboyu21b@ict.ac.cn

Institute of Computing Technology,
Chinese Academy of Sciences

University of Chinese Academy of
Sciences
China

Xiaoming Chen†
chenxiaoming@ict.ac.cn

Institute of Computing Technology,
Chinese Academy of Sciences

China

Yinhe Han†
yinhes@ict.ac.cn

Institute of Computing Technology,
Chinese Academy of Sciences

China

Xian-He Sun†
sun@iit.edu

Department of Computer Science,
Illinois Institute of Technology

USA

Abstract
Sparse matrix-matrix multiplication (SpMM) is a critical com-
putational kernel in numerous scientific and machine learn-
ing applications. SpMM involves massive irregular memory
accesses and poses great challenges to conventional cache-
based computer architectures. Recently dedicated SpMM
accelerators have been proposed to enhance SpMM per-
formance. However, current SpMM accelerators still face
challenges in adapting to varied sparse patterns, fully ex-
ploiting inherent parallelism, and optimizing cache perfor-
mance. To address these issues, we introduce ACES, a novel
SpMM accelerator in this study. First, ACES features an
adaptive execution flow that dynamically adjusts to diverse
sparse patterns. The adaptive execution flow balances par-
allel computing efficiency and data reuse. Second, ACES
incorporates locality-concurrency co-optimizations within
the global cache. ACES utilizes a concurrency-aware cache
management policy, which considers data locality and con-
currency for optimal replacement decisions. Additionally, the
integration of a non-blocking buffer with the global cache en-
hances concurrency and reduces computational stalls. Third,
the hardware architecture of ACES is designed to integrate
∗Both authors contributed equally to this research.
†Corresponding authors.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0386-7/24/04.
https://doi.org/10.1145/3620666.3651381

all innovations. The architecture ensures efficient support
across the adaptive execution flow, advanced cache opti-
mizations, and fine-grained parallel processing. Our perfor-
mance evaluation demonstrates that ACES significantly out-
performs existing solutions, providing a 2.1× speedup and
marking a substantial advancement in SpMM acceleration.
ACM Reference Format:
Xiaoyang Lu, Boyu Long, Xiaoming Chen, Yinhe Han, and Xian-He
Sun. 2024. ACES: Accelerating Sparse Matrix Multiplication with
Adaptive Execution Flow and Concurrency-Aware Cache Optimiza-
tions. In 29th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 3 (ASP-
LOS ’24), April 27-May 1, 2024, La Jolla, CA, USA. ACM, New York,
NY, USA, 15 pages. https://doi.org/10.1145/3620666.3651381

1 Introduction
Sparse matrix-matrix multiplication (SpMM) is a compu-
tational process where two sparse matrices are multiplied.
SpMM is a cornerstone in scientific simulations [7], linear
algebra [44, 57], graph analytics [5, 6, 8, 24, 47, 59], and the
rapidly evolving fields of deep learning [14, 19, 20, 33, 42].
Its crucial role in efficiently processing large-scale data struc-
tures and complex algorithms makes the effective accelera-
tion of SpMM not just a computational challenge, but a key
enabler in advancing researches and applications in these
diverse and impactful domains.
The processing efficiency of SpMM is heavily influenced

by the characteristics of the input sparse matrices. The high
proportion of zero elements in these matrices leads to chal-
lenges such as low utilization of computational and mem-
ory resources. These irregular sparse patterns, coupled with
unpredictable memory access patterns, present significant
obstacles for conventional cache-based computing architec-
tures, which are typically optimized for dense and regular

https://doi.org/10.1145/3620666.3651381
https://doi.org/10.1145/3620666.3651381

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Xiaoyang Lu, Boyu Long, Xiaoming Chen, Yinhe Han, Xian-He Sun

data patterns. As a result, SpMM often becomes a perfor-
mance bottleneck, particularly in an era where processing
large datasets is increasingly crucial [15]. Given the critical
role of SpMM in various computational domains, developing
specialized accelerators to enhance SpMM performance is
important.
Existing SpMM accelerators predominantly utilize fixed

execution flows, such as inner-product (InP) [22, 45], outer-
product (OutP) [43, 61], or row-by-row (ROW) [50, 60], each
tailored to optimize either input or output data reuse. How-
ever, the efficiency of each execution flow is determined by
sparse patterns, resulting in inconsistent performance across
different sparse matrices. For instance, in InP, the sparse pat-
tern critically influences the index intersection between the
two input matrices, affecting input data fetching efficiency.
In OutP, the sparse pattern determines the size of the result-
ing partial matrices, making output data reuse optimization
crucial. In the case of ROW, the distribution of non-zeros
in the input matrices influences the effectiveness of input
data reuse, impacting overall data access efficiency. This
variability in performance due to differing sparse patterns
underscores the need for SpMM execution flow that can dy-
namically adapt to optimize performance across a range of
matrix structures.

Additionally, the existing SpMM accelerators exhibit lim-
ited capabilities in exploiting the inherent parallelism in
SpMM, leading to several inefficiencies. First, the inherent
dependencies in the execution flow can lead to a collective
dependency of hardware processing elements (PEs) on com-
pleting a batch of tasks. In other words, multiple PEs process-
ing the same batch must wait for all tasks to be completed
before proceeding, typically leading to the underutilization
of PEs and prolonged pipeline latency. Second, synchroniza-
tion challenges [50] frequently arise in existing accelerators,
especially when multiple mergers are tasked with working
on the same region of the output matrix. In such situations,
the mergers must carefully sequence their work to ensure
both the correctness and coherence of the merging process.
Therefore, the merge process, responsible for consolidating
the multiplication results, often becomes a bottleneck due
to the need for synchronization. These inefficiencies impede
the effective utilization of hardware resources and limit the
overall performance of SpMM operations. This underscores
the need for designs that better align execution flows with
the architecture, enhance fine-grained parallelism, and miti-
gate the synchronization overhead, thereby maximizing the
potential of parallel processing.
Furthermore, cache performance is crucial for the effi-

ciency of SpMM accelerators, but is often overlooked. Con-
ventional cache replacement policies used in SpMM acceler-
ators [32, 60, 61] aim to reduce the number of cache misses
but overlook the importance of concurrency. In SpMM op-
erations, it is common for multipliers to request cache lines
of a row or column concurrently. This concurrency means

that even a single cache miss can cause delays in the entire
processing chain. Moreover, the design of caches in current
accelerators does not incorporate non-blocking features. As
a result, a single cache miss causes delays in subsequent ac-
cesses, thereby exacerbating performance bottlenecks. These
challenges underscore the pressing need for advanced cache
optimizations in SpMM accelerators. Such optimizations
must be tailored to efficiently handle the unique access de-
mands of SpMM, considering concurrent accesses and ensur-
ing non-blocking cache operations to optimize the overall
performance of the accelerator.
In this paper, we introduce ACES, an innovative acceler-

ator for SpMM, specifically designed to dynamically adapt
its execution flow to accommodate varying sparsity pat-
terns, optimize parallel execution, and implement locality-
concurrency co-optimizations for on-chip cache. ACES has
the following unique features.

• Adaptive execution flow. ACES is equipped with
an adaptive execution flow that intelligently adjusts
to varying sparsity patterns of input matrices. This
adaptability is achieved through a spectrum of con-
densing degrees, implemented with minimal overhead
and without altering the original encoding formats of
the matrices. This ensures optimal performance across
diverse matrix structures.

• Balanced data reuse and synchronization. ACES
considers the reuse of input data and the synchroniza-
tion needed for merging partial output results from
each execution flow. By balancing memory access be-
havior with parallelism, it selects themost suitable con-
densing degree for various sparse patterns, enhancing
efficiency.

• Concurrency-aware cachemanagement.ACES em-
ploys PureFiber, a concurrency-aware cache replace-
ment policy, to optimize cache management. This pol-
icy accounts for both reuse distance and potential con-
current accesses, aiming to minimize total stalls caused
by cache accesses.

• Non-blocking buffer integration. ACES incorpo-
rates a non-blocking buffer to manage cache miss ac-
cesses, ensuring that cache misses do not significantly
disrupt subsequent accesses, thereby improving data
access concurrency.

• Tailored hardware architecture. The hardware ar-
chitecture of ACES is specifically designed to comple-
ment its adaptive execution flow and cache optimiza-
tions. The architecture dedicates an addition process-
ing element (APE) to each multiplication processing
element (MPE), providing fine-grained parallelism and
minimizing inter-PE dependencies.

We evaluate ACES against three state-of-the-art SpMM ac-
celerators, including SIGMA [45], SpArch [61], and SPADA [32],
across a variety of workloads with diverse sparse patterns.

ACES: Accelerating SpMM with Adaptive Flow and Concurrency-Aware Cache Optimizations ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

×

×

×

=

=

=

×

×

×

=

=

=

×

×

×

=

=

=

Mat A
(M×K)

Mat B
(K×N)

Partial
Results

Mat A
(M×K)

Mat B
(K×N)

Partial
Results

Mat A
(M×K)

Mat B
(K×N)

Partial
Results

...

+ ++

+ ++

Pa
ra
lle
lis
m

(a) Inner-product (InP) (b) Outer-product (OutP) (c) Row-by-row (ROW)

Figure 1. Examples of three execution flows: (a) inner-
product, (b) outer-product, and (c) row-by-row.

Overall, ACES not only consistently provides optimal perfor-
mance across all workloads, with average speedups of 25.5×
over SIGMA, 8.9× over SpArch, and 2.1× over SPADA, but
also achieves this with the lowest area cost, further under-
scoring its efficiency and innovation in SpMM acceleration.

2 Background
2.1 Execution Flows for SpMM
The multiplication of two sparse matrices involves specific
execution flows, dictating how the matrices are accessed and
processed. The three primary execution flows in SpMM are
InP [22, 45], OutP [43, 61], and ROW [50, 60]. Figure 1 demon-
strates how matrices A and B are multiplied to produce out-
put matrix C using each execution flow. Each execution flow
exhibits distinct characteristics in terms of input and out-
put reuse, index intersection efficiency, and synchronization
requirements.
InP computes each element of matrix C by calculating

the inner product of a corresponding row of matrix A and a
column of matrix B. InP achieves full reuse of matrix C, as all
partial results for each element are immediately accumulated.
Additionally, InP allows multiple PEs to compute different
elements of the output matrix simultaneously, thus minimiz-
ing synchronization issues. However, it faces challenges in
efficiently reusing matrix B, since each column of matrix B
must be refetched multiple times for every row in matrix
A. Moreover, InP often encounters inefficiencies in index
intersection due to the sparsity of matrices A and B. When
fetching an entire row of A and an entire column of B for
computation, only non-zero elements with matching indices
contribute to C. Given the sparsity, many fetched elements
lack matching indices, leading to numerous redundant oper-
ations. This inefficiency is exemplified in Figure 1(a), where
the index intersection between the last row of matrix A and
the last column of matrix B is illustrated.
OutP computes the outer product of a row of matrix A

with a column of matrix B, forming one partial matrix of C
at a time. These partial matrices are subsequently merged to
produce the final output matrix C. OutP allows for efficient
reuse of the input matrices, as each row of A and each col-
umn of B are fetched only once. Additionally, OutP mitigates

the inefficiencies in index intersection seen in InP, since only
entirely zero columns ofA and rows of B do not contribute to
the output, a scenario that is relatively rare. However, OutP
faces challenges in managing the size and number of partial
output matrices, particularly when dealing with matrices
that have highly irregular sparsity patterns. The cumula-
tive size of all partial matrices often surpasses that of the
final output matrix, leading to significant memory traffic and
computational complexity during the merging process. This
issue becomes even more pronounced when handling large
matrices, where the memory and computational demands
are substantially increased. Furthermore, when multiple PEs
are involved in generating and merging these partial matri-
ces, synchronization becomes necessary to ensure a correct
merging process. A large number of synchronization require-
ments can significantly limit the efficiency of the accelerator
and the utilization of PEs.
ROW operates based on row-wise partitioning of the in-

put matrices. For each row C𝑖 of the output matrix C, ROW
calculates the result by merging the scalar-vector products
of each non-zero element 𝑎𝑖,𝑘 in row A𝑖 with the correspond-
ing row B𝑘 of matrix B. ROW generates and stores partial
results for a single output row at a time, enabling efficient
on-chip management and good reuse of matrix C. In terms
of index intersection between the two input matrices, ROW
is efficient, as it fetches only those pairs of non-zeros that
are already matched. However, ROW faces challenges in effi-
ciently reusing the rows of matrix B due to irregular access
patterns driven by the non-zero distribution in matrix A.
Moreover, when PEs work concurrently to generate partial
results for the same output row, synchronization becomes
necessary, as depicted in Figure 1(c), potentially creating
bottlenecks in highly parallel systems.
While conventional execution flows in SpMM provide

distinct characteristics to matrix multiplication, there is no
universally optimal solution. The complexity of handling
highly irregular sparsity patterns, coupled with the demands
of parallel computing, underscores the need for innovative,
adaptive execution flows that can efficiently balance data
reuse, index intersection, and parallelism.

2.2 SpMM Accelerators
SIGMA [45] is an InP-based SpMM accelerator that enhances
index intersection efficiency through a bitmap format for
sparse matrix representation. This format ensures that only
essential computations are conducted. Additionally, SIGMA
employs flexible interconnections among PEs to optimize
their utilization. SpArch [61] adopts an OutP execution flow
for SpMM, specifically focusing on enhancing the efficiency
of the merging process. It proposes an aggressively con-
densed matrix representation for matrix A, which reduces
the number of partial matrices produced during multiplica-
tion but may compromise input reuse. Additionally, SpArch
integrates a high-radix merger, pipelining the production

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Xiaoyang Lu, Boyu Long, Xiaoming Chen, Yinhe Han, Xian-He Sun

and merging of partial matrices. SPADA [32] inherits ROW
and introduces a window-based adaptive (WA) execution
flow to effectively adapt SpMM to various sparse patterns,
thereby addressing the limitations of traditional fixed execu-
tion flows. The specialized hardware architecture of SPADA
includes multiple multipliers, which are responsible for con-
currently executing scalar-vector multiplications within a
WA window. However, WA introduces a collective depen-
dency among the multipliers. This dependency dictates that
a multiplier can only proceed to the next window once all the
multiplication tasks in the current window are completed.

2.3 Challenges and Opportunities
SpMMacceleratorswith fixed execution flows, such as SIGMA [45]
and OuterSPACE [43], have introduced innovations in accel-
erating SpMM. However, they also encounter challenges due
to the limitations of their fixed execution flows. In contrast,
the WA execution flow of SPADA [32] offers an innova-
tive approach to adapt to diverse sparse patterns. However,
WA relies on collective dependencies among multipliers for
coordinated execution, which, while essential, introduces
potential bottlenecks in hardware parallelism. This depen-
dency can limit the efficiency and scalability of the system,
especially in cases where high parallel processing is required.
Moreover, the performance of on-chip caches presents

a significant challenge in the context of concurrent data
demands inherent in SpMM operations. Current accelera-
tors [32, 60, 61] optimize cache performance on data locality.
However, data concurrency is equally important [36, 38, 46,
52]. Effective cache management should consider data lo-
cality and concurrency together. In addition, the on-chip
cache should handle cache misses in a non-blocking manner,
allowing the cache to continue servicing other requests ef-
ficiently. The non-blocking design could enhance the data
concurrency and reduce computational stalls.

Leveraging insights from the existing accelerators and the
characteristics of SpMM, ACES differentiates itself with an
adaptive execution flow that balances data reuse and paral-
lelism, which effectively overcomes the limitations of fixed
execution flows and the collective dependencies of WA. Fur-
thermore, ACES emphasizes the co-optimizations of locality
and concurrency in on-chip cache design and management.
We introduce the details of ACES in the subsequent section.

3 ACES Architecture
3.1 Overview of ACES
Figure 2 presents an overview of ACES, an accelerator de-
signed for efficient SpMM. The key components of ACES
consist of a condensing adaptor to dynamically determine the
execution flow; multiple PEs, including MPEs for handling
multiplications and APEs for merging partial results; two
schedulers (synchronization scheduler and merging sched-
uler) that adaptively distribute tasks across APEs; and a

Memory

Global Cache

NB BufferMat A
Fetcher

Mat B
Fetcher

Global
Buffer

MPE

MPE

...

!!,# !!,$

Mat B Row FiberMat A Element

"%,& "%,$
Cached Mat C Partial Row Fiber

Mat C Partial Row Fiber from MPE

Condensing
Adapter

PureFiber
Policy

a3,5

0 1 2 3 4 5
0
1
2
3

Mat A

0
1
2
3

0 1 2 3 4 5
Condensed A

0
1
2
3
4
5

0 1 2 3
Mat B

"%,#' "%,$'
"%,#' "%,$'

"%,& "%,#' "%,$ + "%,$'

Mat C Partial
Row Fiber

APE
...

APE

APE

B5

Sync
Scheduler

Merging
Scheduler

SQ

SQ

Figure 2. Overview of ACES.

global cache, which is integrated with a non-blocking buffer
(NB buffer) to organize a non-blocking cache system. These
components synergize to build the key features of ACES:
an adaptive execution flow, a tailored hardware architec-
ture, and advanced locality-concurrency co-optimizations in
cache management.

Adaptive execution flow. ACES incorporates a conden-
sation adapter that dynamically tunes the condensed matrix
representation for matrix A to optimize the execution flow,
as depicted in the top left of Figure 2. This feature allows for
flexibility in handling varying sparsity patterns of matrix A
(more details in Section 3.2). A fetcher for matrix A retrieves
elements from the condensed columns, placing them in a
global buffer, specifically designed as a lightweight buffer
to store elements of matrix A, while another fetcher fetches
necessary rows of matrix B into the global cache.

Tailored hardware architecture.ACES employs parallel
computing, utilizing MPEs and APEs to support its adaptive
execution flow (detailed in Section 3.3). Each MPE, illus-
trated in the bottom left of Figure 2, loads a distinct non-zero
element from the condensed column of matrix A and a cor-
responding row from matrix B. These MPEs execute scalar-
vector multiplications in parallel, as shown in the bottom
middle of Figure 2. In conjunction with each MPE, each APE
independently performs immediate merging of the partial
output rows produced by the MPE with the corresponding
partial result stored in the global cache, as demonstrated in
the bottom right of Figure 2. A synchronization scheduler
is designed to mitigate synchronization conflicts between
APEs when processing immediate merging (more details in
Section 3.4). After completing all multiplication operations,
the APEs, under the coordination of a merging scheduler
(detailed in Section 3.4), engage in the final merging stage
to merge the remaining partial results into the final output
matrix.

Locality-concurrency co-optimizations for global cache.
The global cache in ACES is a critical component, designed
to efficiently manage both matrix B rows and matrix C par-
tial output rows. The PureFiber cache replacement policy is

ACES: Accelerating SpMM with Adaptive Flow and Concurrency-Aware Cache Optimizations ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

0 1 2 3 4 5
Mat A

0 1 2 3 4 5
Mat B

0
1
2
3
4
5

0 1 2 3 4 5
Condensed Mat A

0 1 2 3 4 5
Mat B

0
1
2
3
4
5

0 1 2 3 4 5
Condensed Mat A

0 1 2 3 4 5
Mat B

0
1
2
3
4
5

MPE 0

MPE 1

MPE 2

MPE 3

a!,!
a#,!
a!,$
a#,$

B0

B1
B1

B0

C!%

C#%

C!%%

C#%%

×
×
×
×

=
=

=

=

Parallelism

MPE 0

MPE 1

MPE 2

MPE 3

a!,!
a$,&
a&,'
a',(

B0

B3
B4

B2

C!%

C$%

C&%

C'%

×
×
×
×

=
=

=

=

Parallelism

MPE 0

MPE 1

MPE 2

MPE 3

a!,!
a$,&
a(,&
a#,!

B0

B2
B0

B2

C!%

C$%

C(%

C#%

×
×
×
×

=
=

=

=

Parallelism

Good Reuse of B

Bad Reuse of B

Good Reuse of B

Need Synchronization

w/o Synchronization

w/o Synchronization

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

(a)

(b)

(c)

×

×

×

=

=

=

Figure 3. Three execution flows with different condensing
degrees: (a) w/o condensing, (b) aggressive condensing, and
(c) moderate condensing.

employed to manage cache lines effectively by considering
both data locality and concurrency (more details in Section
3.5). The integration of a NB buffer in the global cache (more
details in Section 3.6) supports the PureFiber policy and en-
hances performance by facilitating non-blocking accesses.

3.2 Adaptive Execution Flow
Inspired by ROW, in ACES, each MPE is tasked with a scalar-
vector multiplication, involving a single non-zero element
from matrix A and the corresponding row in matrix B. This
design addresses the inefficiencies of index intersection in
InP and reduces the collective dependency among MPEs.
Moreover, generating partial results at row granularity offers
several advantages. It supports immediate merging, which
pipelines both multiplication and merging processes. Addi-
tionally, it alleviates the challenges in OutP, where transfer-
ring entire partial matrices during the merging stage can
significantly increase memory traffic. However, the ROW
method compromises the reuse of matrix B, as non-zero ele-
ments from the same row of matrix A are often processed
concurrently by MPEs, leading to requests for different rows
of matrix B. To optimize the reuse of matrix B, we traverse
the non-zero elements of matrix A column by column, sim-
ilar to OutP. Figure 3(a) demonstrates this execution flow
when no condensing is applied to matrix A. While this exe-
cution flow enhances the reuse of matrix B, it can also lead to
multiple MPEs generating partial results for the same output
matrix row, particularly when matrix A has high sparsity.
This situation introduces synchronization challenges among
APEs during the immediate merging.

An aggressive condensed matrix representation for ma-
trix A involves shifting all non-zero elements to the left-
most columns, which results in much denser condensed
columns. Despite condensation, each non-zero element re-
tains a record of its original column index to ensure computa-
tional accuracy [61]. With the aggressive condensed matrix
representation, traversal of non-zero elements of matrix A

occurs through condensed columns, impacting the execu-
tion flow of SpMM. In terms of implementation, matrix A
is stored in the CSR format, where each row is an ordered
list of column indices. The elements sharing the same in-
dex in each ordered list are fetched and assigned to MPEs
for parallel computing. As shown in Figure 3(b), when four
MPEs concurrently perform scalar-vector multiplications
using elements from a condensed column of matrix A and
corresponding rows from matrix B, the potential for reusing
rows from matrix B diminishes due to simultaneous requests
for different rows. However, aggressive condensing often
generates distinct partial rows for the output matrix dur-
ing parallel scalar-vector multiplications. This results in a
diminished need for synchronization among APEs during
immediate merging.
In an effort to strike a balance between data reuse and

parallel computing efficiency, we introduce a moderately
condensed matrix representation for matrix A. As depicted
in Figure 3(c), the columns of matrix A are divided into two
distinct groups: the first half in one group and the second
half in the other. Within each group, non-zero elements of
matrix A are shifted to the leftmost columns, which is the
same as in aggressive condensing. For the example in Fig-
ure 3, the moderate condensing of matrix A enhances the
reuse of matrix B when compared with aggressive condens-
ing. Furthermore, it reduces synchronization challenges that
might emerge without condensing.

Each condensing degree tries to offer a trade-off between
data access and parallelism. However, given the complex
and varied sparsity patterns in matrices, no single condens-
ing degree can consistently outperform others across all
workloads. This highlights the critical need for an adaptive
mechanism, tailored to dynamically adjust to the unique
sparse pattern of each input, thereby optimizing overall per-
formance. ACES introduces such a mechanism, offering a
spectrum of condensing degrees to ensure an optimized exe-
cution flow tailored to each workload.

In ACES, we employ a condensing adapter to dynamically
adjust the representation of matrix A among three condens-
ing degrees: none, moderate, and aggressive. We first parti-
tion the entire matrix into bands. Drawing on insights from
[32], we recognize that adjacent rows with similar distribu-
tions of non-zero elements tend to have a stable row length
(number of non-zero elements). Leveraging this observation,
the partitioning of thematrix into bands is primarily based on
row lengths, as indicated by the CSR offsets array, ensuring a
fast and lightweight partitioning. A new band is established
whenever the absolute difference in row length between
adjacent rows surpasses a specified threshold, which we em-
pirically set to be 10. Considering that each band displays
a similar sparse pattern, we select the optimal condensing
degree for each. For large bands, consisting of at least 256
rows, we identify the optimal condensing degree through
the sampling phase. In the sampling phase, we execute three

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Xiaoyang Lu, Boyu Long, Xiaoming Chen, Yinhe Han, Xian-He Sun

sample passes, each containing 32 rows. During these passes,
we execute the SpMM with different condensing degrees
and monitor the overall execution time, including both mul-
tiplication and immediate merging tasks. The condensing
degree resulting in the best execution time is then applied
to the remaining rows in the band, as it offers the most effi-
cient balance between data reuse and parallelism. For small
bands, we apply moderate condensing by default due to in-
sufficient data for sampling, striking a balance between no
and aggressive condensing.
Once the execution flow is determined, the fetcher for

matrix A loads non-zero elements of matrix A into the global
buffer ahead of execution. Concurrently, the fetcher for ma-
trix B rows retrieves the row corresponding to the matrix
A element being fetched and places it in the global cache.
Each row of matrix B, stored as a fiber [32, 60], is a list sorted
by coordinate, consisting of the coordinates and values of
each non-zero element. Then, the element from matrix A
and the corresponding fiber of matrix B are dispatched to an
available MPE.

3.3 Processing Elements
Each MPE in ACES is specifically designed for executing
scalar-vector multiplications, a fundamental operation in
SpMM. The partial output fiber produced by an MPE is filled
into a corresponding selective queue (SQ), buffers the se-
quentially generated products from the multiplier. Due to
the independence of each scalar-vector multiplication, every
MPE can operate concurrently, avoiding collective dependen-
cies and thereby maximizing processing element utilization.
ACES adopts a distinctive one-to-one pairing of MPEs with
APEs, facilitating efficient processing of different rows of
the output matrix in SpMM. The bottom middle of Figure 2
shows the example of MPE executes the scalar-vector multi-
plication between 𝑎3,5 with the corresponding row B5.
In tandem with MPEs, APEs play a crucial role, particu-

larly in the immediate merging of partial output fibers. Each
APE handles the merging of newly produced partial output
fibers from SQ with corresponding partial output fibers pre-
viously generated and stored in the global cache. This design
allows APEs to initiate the merging process as soon as a
partial fiber becomes available in the corresponding SQ, thus
enhancing the efficiency of the system. The merging of each
fiber is achieved by walking two pointers over the two fibers,
comparing the corresponding coordinates, merging them
accordingly if the coordinates match, and then advancing
the pointers based on the comparison results. The outcome
of this merging is a new fiber of matrix C, which is a sorted
merge of the two input fibers and is then written back to
the global cache for further processing. The bottom right of
Figure 2 illustrates an APE executing the merging between
two partial fibers. In instances where there is no partial fiber
in the global cache that can be merged with the partial fiber
loaded from the SQ, the APE will write the partial fiber into

the cache directly. This approach is implemented to prevent
the stalls that could arise from waiting for a matching fiber
to be fetched from memory. Immediate merging at row gran-
ularity in ACES facilitates the easy storage of partial fibers
in the global cache and ensures effective reuse of matrix C,
consequently reducing memory traffic. The independent and
concurrent processing by the APEs, in collaboration with
the synchronization scheduler, enhances system parallelism
and optimizes the utilization of MPEs. Meanwhile, the MPEs
continue with subsequent multiplication tasks, further am-
plifying the parallel processing capabilities of ACES.
In immediate merging, APEs focus on merging newly

generated partial fibers with those currently stored in the
global cache. However, due to the limited capacity of the
global cache, it is not feasible to keep all partial fibers there.
Consequently, some partial fibers are periodically written
back to DRAM. This necessitates a final merging stage after
the completion of all scalar-vector multiplications. During
the final merging, every APE in the system participates, with
each APEmerging two partial fibers at a time. ACES employs
a merging scheduler to optimize this final merging process,
ensuring the final output matrix is assembled efficiently.

3.4 Schedulers
In ACES, two schedulers are introduced: the synchroniza-
tion scheduler, which strives to streamline the immediate
merging process and reduce synchronization delays, and
the merging scheduler, managing the final merging stage to
minimize memory accesses.

Synchronization scheduler. Once the partial fibers are
generated by MPEs, they are buffered in the SQs. ACES
utilizes the synchronization scheduler to efficiently assign
fibers to APEs for initiating the immediate merging process.
The synchronization scheduler coordinates with SQs and
APEs. It tracks the rows of partial fibers that the APEs are
currently merging to schedule subsequent merge tasks that
minimize stalls of the APEs due to synchronization issues.
When an APE becomes available, the synchronization

scheduler evaluates the head fiber of the corresponding SQ.
The design of the SQ acts similarly to a normal FIFO, but
allows for selective access to stored fibers, enabling the sched-
uler to select an appropriate fiber to minimize synchroniza-
tion conflicts. If the top fiber in an SQ cannot be processed
due to another MPE currently updating the corresponding
row in the cache, the scheduler selects the next available
fiber that does not have a synchronization issue. This ap-
proach ensures continuous processing and minimizes idle
time for the APEs. In cases where the top fibers in different
SQs correspond to the same row, the scheduler randomly
picks an available APE from the corresponding APEs to first
merge these two partial fibers. After this initial merge, the
APE then merges the result with the corresponding partial
fibers stored in the cache. For scenarios without synchro-
nization conflicts, the scheduler assigns the top fibers from

ACES: Accelerating SpMM with Adaptive Flow and Concurrency-Aware Cache Optimizations ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

5 5 7

42

6

1310

23

5

42

6

117

18

Partial Fibers

Final Output Fiber Final Output Fiber

Partial Fibers

Figure 4. Example of Huffman trees for two different rows
of the output matrix.

the SQs directly to their corresponding APEs. With the help
of the synchronization scheduler, execution stalls caused by
synchronization issues are mitigated, and the parallelism of
APEs is guaranteed.

Merging scheduler. In the final merging stage, the merg-
ing scheduler aims to minimize memory accesses. Drawing
inspiration from SpArch [61], ACES adapts the Huffman tree,
traditionally used in data compression for minimizing the
total weighted path length of encoded symbols [26], to or-
chestrate the merging process for each row of the output
matrix. Each Huffman tree in ACES is a binary tree, with
leaf nodes representing partial fibers from a specific row of
the output matrix. The weight of each node equates to the
number of non-zero elements in the fiber it represents. The
merging of fibers with the lowest weights forms internal
nodes, each representing a merged result. The root node rep-
resents the fully merged fiber for that row. The bottom-up
construction of the Huffman tree in ACES prioritizes the
merging of fibers with fewer elements first. This approach
not only reduces the number of memory loads and stores re-
quired during the final merging phase, but also decreases the
total number of comparisons and operations needed, lead-
ing to a more efficient merging process. Figure 4 provides
a simplified representation that assumes no intersection of
non-zero elements between the leaf nodes, where the weight
of each internal node is the sum of the weights of its child
nodes. In practice, however, the actual number of non-zero
elements post-merging is often lower due to the presence of
intersections.

In the practical implementation of ACES, the Huffman tree
is constructed using a priority queue. Initially, weights of
leaf nodes, each representing a partial fiber, are entered into
the queue. In each iteration, the two fibers with the lowest
weights are extracted from the queue and merged, forming a
new task encapsulated as a vector of fibers. With the updated
weight, the merged fiber is then reinserted into the priority
queue for potential future merging operations. This process
repeats until all partial fibers corresponding to an output row
are merged into a single fiber. Upon completing the merging
tasks for one row, the priority queue is efficiently repurposed
for the next, reducing the need to maintain a separate queue
for each row. The merging scheduler holds the determined
tasks temporarily in a small buffer, preserving the order in

B0-0 B0-1B0
B1
B2
B3

B4

B2-0

B4-0 B4-1 B4-2 B4-3

B0-0 (5)
B0-1 (5)

B0-0 (4)
B0-1 (4)
B1-0 (3)
B1-1 (3)
B1-2 (3)
B1-3 (3)
B1-4 (3)

B0-0 (3)
B0-1 (3)
B1-0 (2)
B1-1 (2)
B1-2 (2)
B1-3 (2)
B1-4 (2)
B2-0 (4)

B4-1 (In)
B4-2 (In)
B4-3 (In)
B1-1 (1)
B1-2 (1)
B1-3 (1)
B1-4 (1)
B4-0 (In)

B4-1 (In)
B4-2 (In)
B4-3 (In)
B1-1 (In)
B1-2 (In)
B1-3 (In)
B1-4 (In)
B1-0 (In)

B0-0 (3)
B0-1 (3)
B4-3 (In)
B1-1 (In)
B1-2 (In)
B1-3 (In)
B1-4 (In)
B1-0 (In)

B0-0 (2)
B0-1 (2)
B2-0 (In)
B1-1 (In)
B1-2 (In)
B1-3 (In)
B1-4 (In)
B1-0 (In)

B0-0 (1)
B0-1 (1)
B3-5 (In)
B3-1 (In)
B3-2 (In)
B3-3 (In)
B3-4 (In)
B3-0 (In)

B0-0 (In)
B0-1 (In)
B3-5 (In)
B3-1 (In)
B3-2 (In)
B3-3 (In)
B3-4 (In)
B3-0 (In)

Step 0
Fetch B0

Step 1
Fetch B1

Step 2
Fetch B2

Step 3
Fetch B4

Step 4
Fetch B1

Step 5
Fetch B0

Step 6
Fetch B2

Step 7
Fetch B3

Step 8
Fetch B0

Stall Stall Stall
Replace B2
then B0, B1

Stall
Replace B4

Stall
Replace B4

Stall
Replace B4

B1-0 B1-1 B1-2 B1-3 B1-4

B3-0 B3-1 B3-2 B3-3 B3-4 B3-5

Stall Stall
Replace B1

then B2

B0-0 (7)
B0-1 (7)

B0-0 (6)
B0-1 (6)
B1-0 (8)
B1-1 (8)
B1-2 (8)
B1-3 (8)
B1-4 (8)

B0-0 (5)
B0-1 (5)
B1-0 (7)
B1-1 (7)
B1-2 (7)
B1-3 (7)
B1-4 (7)
B2-0 (5)

B0-0 (4)
B0-1 (4)
B4-0 (In)
B4-1 (In)
B4-2 (In)
B4-3 (In)
B1-4 (6)
B2-0 (4)

B0-0 (3)
B0-1 (3)
B1-0 (In)
B1-1 (In)
B1-2 (In)
B1-3 (In)
B1-4 (In)
B2-0 (3)

B0-0 (5)
B0-1 (5)
B1-0 (In)
B1-1 (In)
B1-2 (In)
B1-3 (In)
B1-4 (In)
B2-0 (2)

B0-0 (4)
B0-1 (4)
B1-0 (In)
B1-1 (In)
B1-2 (In)
B1-3 (In)
B1-4 (In)
B2-0 (In)

B0-0 (3)
B0-1 (3)
B3-0 (In)
B3-1 (In)
B3-2 (In)
B3-3 (In)
B3-4 (In)
B3-5 (In)

B0-0 (In)
B0-1 (In)
B3-0 (In)
B3-1 (In)
B3-2 (In)
B3-3 (In)
B3-4 (In)
B3-5 (In)

Step 0
Fetch B0

Step 1
Fetch B1

Step 2
Fetch B2

Step 3
Fetch B4

Step 4
Fetch B1

Step 5
Fetch B0

Step 6
Fetch B2

Step 7
Fetch B3

Step 8
Fetch B0

Stall Stall Stall
Replace B1

Stall
Replace B4

Stall Stall
Replace B1

then B2

Pure Fiber Pure Fiber Pure Fiber

Pure Fiber

(a)

(b)

C0
C1
C2
C4
C1
C0
C2
C3
C0

RD

RD+FD

Figure 5. Comparison of cache replacement policies: (a) be-
havior of Belady’s OPT policy, and (b) behavior of PureFiber.

which they were created. When an APE becomes available,
the merging scheduler prioritizes selecting the next task that
minimizes synchronization conflicts. The merging scheduler
adheres to the optimal merging order prescribed by the Huff-
man trees and mitigates synchronization risks, enhancing
the overall processing efficiency in the final stage of SpMM.

3.5 Global Cache and PureFiber Policy
The global cache in ACES, organized as a multi-banked, set-
associative cache, stores fibers of matrix B and partial output
fibers of matrix C, supporting cache line granularity accesses
for flexible capacity sharing among various fibers. During
MPE operation in ACES, multiplying an element frommatrix
A with elements from the corresponding row in matrix B
leads to concurrent requests for cache lines of matrix B. A
single cache miss among these requests can stall the scalar-
vector multiplication process, as the MPE needs all required
data from matrix B to produce a complete partial fiber. We
define pure fiber as a scenario where cache lines of a fiber
are accessed concurrently without any cache misses. Achiev-
ing a high number of pure fibers in SpMM is crucial for
mitigating cache stalls. Contrasting with traditional acceler-
ators [32, 61], which mainly focus on reducing cache misses,
we have developed PureFiber, a concurrency-aware cache
replacement policy designed to prioritize achieving more
pure fibers in SpMM.

PureFiber integrates data locality and concurrency consid-
erations for each cache line when making eviction decisions.
It employs the Next Request Distance (RD), dynamically cap-
turing the reuse distance to the fiber, which indicates the
expected time until the fiber is next requested. The RD value

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Xiaoyang Lu, Boyu Long, Xiaoming Chen, Yinhe Han, Xian-He Sun

is initialized upon cache line insertion or a cache hit and is
decremented until the line is reused, thereby serving as a
measure of temporal locality. Additionally, PureFiber evalu-
ates the Fiber Density (FD), representing the number of cache
lines in the corresponding fiber and serving as an indica-
tor of potential concurrent accesses. When making eviction
decisions, PureFiber selects the cache line with the highest
combined sum of RD and FD for eviction. If multiple candi-
dates are present, PureFiber prioritizes evicting the line with
higher fiber density. By balancing data locality with con-
currency, PureFiber optimizes cache management, focusing
on increasing the number of pure fibers to support uninter-
rupted computations and enhance overall performance.
Figure 5 presents a simplified case study, all the cache

capacity is used to store lines of matrix B. The leftmost
column represents a condensed column from the condensed
Amatrix. Each element is annotated with its original column
number. For instance, the element labeled𝐶0 originates from
column 0 in the original matrix. Figure 5 top displays row
fibers of matrix B, segmented according to the cache line
length, as indicated at the top of the figure (B0 to B4). In this
example, the cache can store at most 8 lines.
Figure 5(a) illustrates Belady’s OPT policy [4], which fo-

cuses solely on temporal locality. This policy prioritizes evict-
ing cache lines with the largest RD values. From timestamps
0 to 2, lines from B0, B1, and B2 are loaded into the cache.
At timestamp 3, to accommodate lines from B4, the policy
first evicts lines from B2 and B0 because they have larger RD
values than those from B1. Then, to fully accommodate B4,
line B1-0 is also evicted. At timestamp 4, the miss of a single
line from B1, despite four hits, leads to a stall in output fiber
production. As demonstrated in Figure 5(a), Belady’s policy
results in only one pure fiber. Figure 5(b) illustrates the cache
replacement decisions made by PureFiber under the same
access pattern. In a non-blocking cache system capable of
handling concurrent misses (detailed in Section 3.6), Pure-
Fiber achieves three pure fibers. By considering data locality
and prioritizing the retention of fibers with lower density,
such as B0 and B2, PureFiber secures two additional pure
fibers at timestamps 5 and 6. This example underscores the
ability of PureFiber to enhance performance by balancing
considerations of locality and concurrency.
In ACES, PureFiber manages the cache lines for fibers in

matrix B as well as the partial output fibers of matrix C. By
prioritizing the retention of output fibers with smaller RD
values, PureFiber increases the probability that correspond-
ing partial results previously generated remain available in
the cache for immediate use. Considering the locality of the
partial output fibers of matrix C, APEs are able to partici-
pate in immediate merging, which enhances their utilization
and reduces the number of tasks needed in the final merg-
ing stage. Additionally, the retention of fibers with smaller
FD values helps prevent the APEs from engaging in time-
consuming immediate merging tasks, especially when an

NB Buffer
Tag Subentries

Memory

Global Cache
Tag Data

Cache
Request

A
B

Cache
Miss

C

DE
Memory
RequestReturn DataResponse Pending Misses

Cache
Hit

Figure 6. Organization of the non-blocking cache.

MPE generates a low-density fiber that requires to be merged
immediately with a much denser partial fiber already in the
cache. By prioritizing the eviction of higher-density fibers,
PureFiber improves the overall pipeline efficiency in ACES.

3.6 Non-Blocking Buffer
Traditional accelerators strive for speedups through exten-
sive parallel computation. However, the effectiveness of par-
allelism is often constrained by the performance limitations
of the memory system. In particular, a conventional block-
ing global cache stalls upon a cache miss, waiting until the
missing cache line is retrieved from memory. This behavior
significantly hinders SpMM performance due to its irregular
access patterns and frequent cache misses.

In response, ACES integrates an NB buffer with the global
cache, creating an efficient non-blocking cache system. The
non-blocking cache [29], widely adopted in modern proces-
sors, ensures that cache misses do not stall subsequent cache
accesses. A non-blocking cache can handle a number of out-
standing misses, significantly improving data concurrency
[2, 38, 46]. Figure 6 shows the organization and workflow
of the non-blocking cache in ACES. For each global cache
request (A), when a miss occurs, the corresponding miss
information is stored in an entry of the NB buffer (B). NB
buffer tracks all outstanding cache misses, with each entry
referring to one missing cache line and containing multiple
subentries for handling multiple misses to the same line. If
it is the first miss to a specific cache line, a memory request
is issued (C); subsequent misses for the same line are con-
solidated within the corresponding entry. While the cache
continues to service other requests, the NB buffer fetches
the missing data from the main memory. Once the data is re-
trieved, the buffer updates the global cache with the new data
and resolves all associated misses (D). Once the misses are
resolved, the corresponding entry in the NB buffer is released
for future cache misses. All PEs or fetchers waiting for that
cache line are then notified that the data is available in the
cache (E). By allowing the cache to handle other requests
during miss processing concurrently, the non-blocking de-
sign in ACES significantly reduces memory stall cycles and
enhances concurrency.

ACES: Accelerating SpMM with Adaptive Flow and Concurrency-Aware Cache Optimizations ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Table 1. Configuration of ACES.

MPEs 16 MPEs (multipliers); 1 GHz
APEs 16 APEs (merger); 1 GHz
SQs 16 SQs, 2 KB per queue

Global Buffer 0.5 KB, 32-entry buffer
Global Cache 1 MB, 16 banks, 16-way associative
Crossbar 16×16 and 16×16, swizzle-switch based
NB buffer 0.5 KB, 64 subentries
Memory 128 GB/s, 16 64-bit HBM channels, 8GB/s per channel

Table 2. Evaluated workloads.

Workload Density Workload Density
2cubes_sphere (cs) 1.6e-04 offshore (of) 6.3e-05
amazon0312 (az) 2.0e-05 p2p-Gnutella31 (pg) 3.8e-05
ca-CondMat (cc) 3.5e-04 patents_main (pm) 9.7e-06

cage12 (cg) 1.2e-04 poisson3Da (p3) 1.9e-03
cop20k_A (ca) 1.8e-04 roadNet-CA (rc) 1.4e-06

email-Enron (ee) 2.7e-04 scircuit (sc) 3.3e-05
filter3D (f3) 2.4e-04 web-Google (wg) 6.1e-06
m133-b3 (mb) 2.0e-05 webbase-1M (w1) 3.1e-06
mario002 (m2) 1.4e-05 wiki-Vote (wv) 1.5e-03

4 Evaluation Methodology
Table 1 presents the detailed configuration of ACES. The area
of ACES is measured by writing RTL for core components, in-
cluding MPEs, APEs, the condensing adapter, and schedulers,
and synthesizing them using Synopsys Design Compiler on
the TSMC 28 nm technology. CACTI 7.0 [3] is used to model
the overhead of global cache, global buffer, and NB buffer.
For interconnections, we follow the approach used in pre-
vious work [32] and model swizzle-switch networks [48] to
connect banks of the global cache with PEs, thereby facil-
itating concurrent accesses. Furthermore, a cycle-accurate
simulator is built to accurately measure performance, PE
utilization, and memory traffic. This simulator is utilized
to model interactions between hardware components and
implement ACES adaptive execution flow.
We evaluate the performance of ACES using the SuiteS-

parse matrix collection [12], which is a widely recognized
benchmark in prior works [32, 61]. Table 2 presents a selec-
tion of 18 sparse matrices from this dataset, chosen for their
wide range of sparse patterns and densities. The diverse set
of matrices provides a comprehensive basis for evaluating
the adaptability and efficiency of ACES across varyingmatrix
characteristics. To construct SpMM workloads, we adhere
to the methodology outlined in SPADA, wherein a square
matrix is multiplied by itself and a non-square matrix is mul-
tiplied by its transpose, ensuring consistency and fairness in
our evaluation.

For comparison, we selected three state-of-the-art SpMM
accelerators: SIGMA [45], SpArch [61], and SPADA [32].
SIGMA, an InP-based accelerator, and SpArch, which adopts
the OutP execution flow, are chosen to represent two fun-
damental execution flows in SpMM accelerators. SPADA

is included for its adaptive execution flow, which incorpo-
rates the ROW execution flow as one of its modes, offering
a comprehensive perspective for comparison. To ensure fair
comparisons among all accelerators, we standardized the
hardware configurations. The number of multipliers was
aligned to 16, following the configurations of SpArch and
SPADA. For SIGMA, we scale down the Flex-DPE to a width
of 16, reduce the SRAM buffer size to 1.5 MB, and increase
the operating frequency to 1 GHz. Furthermore, each acceler-
ator utilizes the same HBM module for off-chip data storage.
The data precision across all accelerators is standardized
to 64-bit double-precision, which is a common requirement
in scientific computing applications [32]. Regarding input
formats, while ACES processes inputs in the CSR format,
the other accelerators use their respective recommended
formats, ensuring optimal operational conditions for each.
When evaluating the performance of ACES, we include the
cost associated with the sampling phases, ensuring a com-
prehensive and transparent performance comparison.

5 Experiment Results
5.1 Performance Comparisons
Figure 7 illustrates the performance of various SpMM ac-
celerators, normalized to that of SpArch, across all evalu-
ated workloads. We make four major observations. First,
ACES consistently outperforms all state-of-the-art acceler-
ators across every workload, highlighting its exceptional
adaptability to diverse sparse patterns. On average, ACES
achieves significant performance gains of 25.5×, 8.9×, and
2.1× over SIGMA, SpArch, and SPADA, respectively. Second,
SIGMA faces challenges in most workloads, despite utiliz-
ing a bitmap format for sparse matrix representation. Third,
SpArch achieves a 2.9× speedup over SIGMA on average,
which is attributed to the better input reuse of OutP execu-
tion flow and its efforts to reduce off-chip traffic during the
merging phase. Fourth, SPADA, with its WA execution flow,
provides an adaptive execution flow and better performance
compared with accelerators with a fixed execution flow. On
average, SPADA leads to a 4.2× speedup over SpArch and a
12.0× speedup over SIGMA.

Figure 8 presents a comparison of the total off-chip mem-
ory traffic for matrix B and partial outputs across various
workloads. The memory traffic associated with matrix B is
crucial for the effectiveness of multiplications. Similarly, ef-
ficient handling of reads and writes for partial outputs is
vital for the merging processes. Figure 8 demonstrates that
ACES incurs the lowest off-chip memory traffic compared to
recent SpMM accelerators. On average, the off-chip memory
traffic of SIGMA is 11.6× higher than that of ACES, while
the traffic for SpArch and SPADA is 4.4× and 3.1× higher,
respectively. SIGMA achieves efficient output reuse but faces
significant challenges in input memory traffic. SpArch strives
to reduce off-chip traffic during the merging phase through

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Xiaoyang Lu, Boyu Long, Xiaoming Chen, Yinhe Han, Xian-He Sun

0.0
2.0
4.0
6.0
8.0

10.0
12.0

cs az cc cg ca ee f3 mb m2 of pg pm p3 rc sc wg w1 wv GM

N
or
m
al
ize

d
Sp
ee
du

p

SIGMA
SpArch
SPADA
ACES

13.0 15.9

Figure 7. Performance comparison among SIGMA, SpArch, SPADA, and ACES.

0.0
0.5
1.0
1.5
2.0
2.5
3.0

cs az cc cg ca ee f3 mb m2 of pg pm p3 rc sc wg w1 wv GM

N
or

m
al

ize
d

Tr
af

fic

SIGMA
SpArch
SPADA
ACES

3.4 3.2 12.0

Figure 8. Memory traffic comparison among SIGMA, SpArch, SPADA, and ACES.

0.0

0.2

0.4

0.6

0.8

1.0

cs az cc cg ca ee f3 mb m2 of pg pm p3 rc sc wg w1 wv GM

PE
 U

til
iza

tio
n

SIGMA
SpArch
SPADA
ACES

Figure 9. PE utilization comparison among SIGMA, SpArch, SPADA, and ACES.

an aggressive condensing representation of matrix A. How-
ever, it disrupts input reuse, leading to excessive fetching
of different rows of matrix B and causing cache thrashing.
SPADA, relying on its adaptive execution flow, reduces mem-
ory traffic compared with SIGMA and SpArch; however, it
still exhibits a significant gap when compared with ACES.
ACES, with its adaptive execution flow, effectively balances
input and output reuse. The design of immediate merging,
in conjunction with the PureFiber cache replacement policy,
ensures finer granularity in merging partial results. Further-
more, the merging scheduler efficiently manages the final
merging stage, collectively contributing to optimal traffic
management.

Figure 9 compares PE utilization among four SpMM accel-
erators. On average, GAMMA, SpArch, SPADA, and ACES
exhibit PE utilization rates of 54.8%, 80.0%, 86.9%, and 95.1%,
respectively. Notably, ACES consistently maintains PE uti-
lization rates above 90.0% in 15 of the 18 evaluated work-
loads. The high PE utilization of ACES is attributable to two
main factors: First, its adaptive execution flow effectively
mitigates synchronization risks. Second, the architecture of

ACES features a one-to-one pairing of MPEs with APEs. This
architecture, combined with efficient task scheduling by the
synchronization scheduler during the immediate merging
phase, reduces the collective dependency of MPEs and en-
hances the parallelism of APEs.

5.2 Performance with Different Condensing Degrees
To assess the effectiveness of the novel adaptive execution
flow designed for ACES, we conduct a performance com-
parison across three static condensing degrees: none (No),
aggressive (Ag), and moderate (Mo), complemented by adap-
tive condensing (Ad). For each condensing degree, we imple-
ment two distinct cache replacement policies: the traditional
Least Recently Used (LRU) policy and the PureFiber (PF) pol-
icy. Figure 10 depicts the overall speedup of various ACES
implementations over SpArch, highlighting the performance
for each specific combination of condensing degrees and
cache replacement policies, such as Ag-LRU (aggressive con-
densing with LRU policy) and Mo-PF (moderate condensing
with PureFiber policy). Importantly, as the original ACES

ACES: Accelerating SpMM with Adaptive Flow and Concurrency-Aware Cache Optimizations ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

0.0

2.0

4.0

6.0

8.0

10.0

No-LRU Ag-LRU Mo-LRU Ad-LRU No-PF Ag-PF Mo-PF ACES

N
or

m
al

ize
d

Sp
ee

du
p

Figure 10. Average performance improvement of implemen-
tations with different static condensing degrees compared
with adaptive condensing, across LRU and PureFiber cache
replacement policies.

incorporates adaptive condensing with the PureFiber pol-
icy, the performance of the Ad-PF combination is distinctly
identified as ACES in Figure 10.
The results presented in Figure 10 demonstrate the supe-

rior performance of adaptive condensing when compared
with static condensing configurations under different cache
replacement policies. Specifically, with the traditional LRU
policy, adaptive condensing (Ad-LRU) achieves a 7.6× speedup
over SpArch, outperforming No-LRU, Ag-LRU, and Mo-LRU
by 29.6%, 13.8%, and 11.7%, respectively. Similarly, when uti-
lizing the concurrency-aware PureFiber cache replacement
policy, adaptive condensing (ACES) achieves an 8.9× speedup
over SpArch, surpassing the No-PF, Ag-PF, and Mo-PF con-
figurations by 27.4%, 12.6%, and 7.4%, respectively.
Adaptive condensing, whether working with the LRU or

the PureFiber cache replacement policy, consistently delivers
significant speedup gains over static condensing configura-
tions. This performance advantage highlights the effective-
ness of adaptive condensing in dynamically balancing data
reuse and parallelism efficiency, providing an optimal execu-
tion flow finely tuned to the diverse sparse patterns of matri-
ces. Such adaptability not only enhances the computational
efficiency of ACES, but also establishes adaptive condensing
as a pivotal feature for its versatility in diverse applications
and system configurations. The ability of adaptive condens-
ing to work effectively with various cache policies further
underscores its broad applicability and flexibility in different
system configurations.

5.3 Performance with Different Cache Replacement
Policies

To highlight the innovation of the concurrency-aware cache
replacement policy PureFiber in ACES, we compare it with
two conventional cache replacement policies, LRU and RD,
for managing the global cache. Specifically, the RD policy is
designed to focus exclusively on the next request distance,
prioritizing the eviction of cache lines that are furthest from
being requested again. Both the LRU and RD policies aim
to enhance data locality with the primary objective of mini-
mizing cache misses. This comparative analysis is intended

0.0

2.0

4.0

6.0

8.0

10.0

No-LRU No-RD No-PF Ag-LRU Ag-RD Ag-PF Mo-LRU Mo-RD Mo-PF

N
or

m
al

ize
d

Sp
ee

du
p

Figure 11. Average performance improvement of imple-
mentations with different cache replacement policies, across
various static condensing degrees.

to showcase the distinctive advantages and potential of the
concurrency-aware cache replacement strategy embodied
by PureFiber. Unlike conventional policies that focus mainly
on data locality, PureFiber considers both data locality and
concurrency, potentially offering a more nuanced approach
to cache management.

Figure 11 illustrates the overall speedup of various ACES
implementations compared with SpArch, emphasizing the
performance enhancements achieved with three distinct
cache replacement policies: LRU, RD, and PureFiber. These
policies are evaluated across three static condensing degrees:
none, moderate, and aggressive, providing a comprehensive
view of their impact on the performance of ACES. The key
observation from Figure 11 is that across all static condensing
degrees, the PureFiber cache replacement policy consistently
leads to the highest speedups. Specifically, without condens-
ing, the PureFiber policy (No-PF) achieves a speedup of 6.9×,
which exceeds the performance of No-LRU and No-RD by
18.0% and 10.7%, respectively. With aggressive condensing,
a 7.9× speedup of PureFiber (Ag-PF) is observed, surpass-
ing Ag-LRU and Ag-RD by 17.2% and 10.0%, respectively.
When utilizing the moderate condensing degree, PureFiber
(Mo-PF) shows the most significant improvement with an
8.2× speedup, outperforming Mo-LRU and Mo-RD by 20.5%
and 10.0%, respectively. These results indicate that utilizing
the concurrency-aware PureFiber policy in cache replace-
ment not only offers the best performance in the absence of
condensing, but also provides superior results when work-
ing with both moderate and aggressive static condensing,
underscoring its effectiveness.

Figure 12 displays the performance of ACES implementa-
tions with adaptive condensing across various cache replace-
ment policies: LRU, RD, and PureFiber. Figure 12(a) illustrates
the speedup achieved by the original ACES implementation
employing the PureFiber policy, as well as the speedup of
Ad-RD, both in comparison with Ad-LRU. We observe that,
when working with adaptive condensing, the consideration
of both data locality and concurrency enables ACES with the
PureFiber policy to achieve an average improvement of 15.9%
over the LRU baseline. In contrast, the average speedup for
Ad-RD, which does not consider data concurrency, is 14.8%.

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Xiaoyang Lu, Boyu Long, Xiaoming Chen, Yinhe Han, Xian-He Sun

0

4

8

12

16

Ad-RD ACES

Sp
ee

du
p

ov
er

 A
d-

LR
U

(%
)

(a)

0

5

10

15

20

25

Ad-RD ACES

Ca
ch

e
St

al
ls

Re
du

ct
io

n
ov

er
 A

d-
LR

U
(%

)

(b)

Figure 12. Average performance of implementations with
adaptive condensing using different cache replacement poli-
cies, showcasing (a) speedup over Ad-LRU, and (b) reduction
in cache stalls over Ad-LRU.

0

10

20

30

40

8 16 32 64 96 128

Sp
ee

du
p

ov
er

 n
o

N
B

Bu
ffe

r (
%

)

Figure 13. Performance of ACES across various NB buffer
sizes.

Figure 12(b) offers a detailed analysis of the PureFiber per-
formance. This figure highlights that the PureFiber policy
effectively reduces cache stalls compared with other policies.
Specifically, ACES with the PureFiber policy, achieves an
average cache stall reduction of 21.8% over Ad-LRU, whereas
Ad-RD, which considers only reuse distance, sees a cache
stall reduction of 13.0%. These observations highlight that al-
though reuse distance considerations can improve the global
cache performance, the integration of concurrency aware-
ness into the global cache management can yield additional
benefits. By considering both data locality and concurrency,
the PureFiber policy substantially diminishes cache stalls,
thereby enhancing the overall efficiency of the cache system
in SpMM accelerators like ACES.

5.4 Performance with Different NB Buffer Sizes
To showcase the effectiveness of integrating a NB buffer with
the global cache in ACES, Figure 13 illustrates the overall
speedup of ACES with varying sizes of the NB buffer, rang-
ing from 8 to 64 subentries. Performance is normalized to a
version of ACES that uses a blocking cache, without integrat-
ing the NB buffer with the global cache. Two key observa-
tions emerge from the results. First, integrating an NB buffer
with the global cache significantly enhances performance.
Even with a minimal 8-subentry NB buffer, ACES achieves a
7.2% performance improvement over the blocking baseline.
Moreover, an ACES configuration with a 16-subentry NB
buffer further achieves a 22.8% speedup. These results val-
idate the critical role of the non-blocking cache in SpMM
accelerator performance. The design of the NB buffer not

Table 3. Area breakdown of ACES.

Components Area (mm2) Components Area (mm2)
2 Fetchers 0.22 Global Buffer 0.06
16 MPEs 0.28 Global Cache 2.09
16 APEs 0.24 16 SQs 0.25

2 Schedulers 0.14 NB buffer 0.08
Crossbars 0.16 Total 3.52

only mitigates global cache stalls due to cache misses but
also enables the global cache to support higher concurrency,
thereby increasing parallelism. Second, Figure 13 reveals that
the performance of ACES tends to stabilize once the number
of subentries of the NB buffer reaches 64. At this point, a
substantial performance improvement of 35.8% is observed.
Additionally, it is important to consider that a larger NB
buffer also introduces additional overhead. Therefore, in bal-
ancing performance gains with potential overheads, we set
the default number of subentries in the NB buffer for ACES
to 64.

5.5 Area and Power
In ACES, the breakdown of the area is detailed in Table 3,
showing a total area of 3.52mm2. Similar to other SpMM ac-
celerators, a significant portion of the area is occupied by the
global cache. Specifically, the 1MB global cache in ACES con-
stitutes 59.4% of the total area. Compared to existing works
like SPADA and SpArch, the global cache capacity in ACES
is relatively modest. By integrating a lightweight NB buffer
with the global cache, ACES achieves reduced area overhead
while improving performance relative to accelerators with
larger caches. For comparison, the total areas of SPADA and
SpArch at 28 nm technology are 6.32mm2 and 13.96mm2, re-
spectively. Additionally, the power consumption evaluation
of ACES reveals that it consumes a total of 2.83W of power.

6 Additional Related Works
Accelerating SpMM on CPU and GPU. Prior research
has focused on accelerating SpMM on both CPU and GPU
architectures [9, 10, 34, 41, 55]. MKL [55] offers math rou-
tines optimized for parallel computation using OpenMP on
CPUs. For GPUs, cuSPARSE [41] enhances SpMM efficiency
by parallelizing computations across matrix rows and us-
ing a hash table for merging partial results. CUSP [9] also
adopts a parallel approach but employs a sorting algorithm
for merging computations from different rows.
SpMM Accelerators. In this work, ACES is compared

against three state-of-the-art SpMMaccelerators: SIGMA [45],
SpArch [61], and SPADA [32]. Additionally, a variety of
other accelerators have been designed specifically to op-
timize SpMM [17, 22, 25, 39, 43, 50, 60]. Most of these ac-
celerators adopt a fixed execution flow: for instance, Ex-
Tenor [22] utilizes an InP execution flow; OuterSPACE [43]
and Spaghetti [25] adopt an OutP execution flow, while

ACES: Accelerating SpMM with Adaptive Flow and Concurrency-Aware Cache Optimizations ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

GAMMA [60] and MatRaptor [50] employ a ROW execu-
tion flow. ACES distinguishes itself by dynamically adjusting
its execution flow in response to the sparsity patterns of
the input matrices. Moreover, ACES innovatively leverages
concurrent data accesses to develop a cache replacement
policy specifically designed for the global cache of an SpMM
accelerator. These novel features, including the adaptive ex-
ecution flow and concurrency-aware cache management,
significantly accelerate SpMM processing.

Sparse DNN Accelerators. As the processing of diverse
sparse matrices in DNNs becomes increasingly critical, the
efficiency of sparse DNN accelerators [13, 18, 31, 39, 49, 62]
grows more paramount. Flexagon [39], a configurable DNN
accelerator, adapts its matrix multiplication execution flow
to accommodate various DNN layers. It introduces a Merger-
Reduction Network (MRN) to modify the execution flow
across InP, OutP, and ROWbased on offline analysis ofmatrix
dimensions and sparsity patterns. CANDLES [18] adopts
a channel-first architecture that traverses activations and
weights to enhance the temporal locality of partial sums
updated for an output neuron. It also incorporates a pixel-
first compression method where matrices are segmented
into groups for compression, storing non-zero values in tiles.
Unlike Flexagon [39], which determines the execution flow
through offline analysis, and CANDLES [18], which employs
a static strategy, ACES dynamically adjusts its execution flow
in response to the sparsity patterns of incoming matrices.
This real-time adaptability allows ACES to balance parallel
computing efficiency with data reuse, while simultaneously
reducing overhead.
Systolic Array-based Sparse DNN Accelerators. The

success of the Tensor Processing Unit (TPU) [27], which in-
troduces the systolic array architecture, has inspiredmany re-
cent systolic array-based DNN accelerators [11, 16, 21, 30, 56].
In order to enhance the utilization and computational effi-
ciency of systolic arrays in handling matrices with diverse
sparsity and sizes, column packing has been proposed. Kung
et al. [30] address this by grouping the columns of a sparse
matrix, combining multiple sparse columns into a single
dense column, and mapping each group to a single col-
umn of the systolic array, significantly improving utiliza-
tion efficiency. Inspired by [30], Sparse-TPU [21] introduces
partition-wise packing, which divides the matrix into bands
and packs columns within each band to minimize data con-
flicts. Moreover, Sparse-TPU employs a collision-aware algo-
rithm to enhance the packing density, even in the presence of
conflicts. While column packing significantly enhances the
computational efficiency, it requires sparse matrix reordering
and is performed offline, introducing extra pre-processing
overhead. Conversely, ACES determines and adjusts adaptive
condensing degrees dynamically during runtime, eliminating
the need for pre-processing and the associated overheads.
Concurrent Data Accesses.Modern architectures now

widely support data concurrency. For example, out-of-order

execution [53] and simultaneous multithreading [54] have
been instrumental in improving pipeline utilization. Addi-
tionally, advancements in memory and cache design like
multi-port [63], pipelined [1], and non-blocking [28] caches
allow more access to coexist within the same cycle, which
substantially improves throughput and reduce memory ac-
cess delays. Concurrent data accesses are utilized for perfor-
mance modeling [40, 51, 52] and optimizations [35, 36, 38, 46,
58]. The C-AMATmodel [52] enhances the traditional AMAT
model [23] by quantitatively evaluating the combined im-
pact of memory access locality and concurrency, accounting
for data access overlaps. In the realm of cache management,
the MLP-aware cache replacement policy [46] and the CARE
framework [38] analyze the cost of each cachemiss amidmul-
tiple concurrent outstanding accesses, guiding cache replace-
ment decisions to reduce stalls and enhance performance.
CHROME [35] offers a holistic solution by integrating cache
replacement and bypassing with pattern-based prefetching,
applying concurrency-aware system-level feedback to refine
decision-making. In contrast to these concurrency-aware
cache management studies [35, 37, 38, 46] that focus on gen-
eral cache management enhancements, PureFiber is specifi-
cally designed for SpMM, leveraging the unique data access
patterns of SpMM to optimize global cache usage in acceler-
ators.

7 Conclusion
In this paper, we introduced ACES, an innovative SpMM ac-
celerator. ACES supports an adaptive execution flow, adept
at efficiently processing matrices with a wide range of sparse
patterns. It also integrates co-optimizations of data locality
and concurrency within its global cache, effectively reducing
memory stalls and enhancing data access concurrency. The
hardware architecture of ACES is meticulously tailored to
complement its adaptive execution capabilities and cache
optimizations, facilitating fine-granularity parallelism. Our
comprehensive evaluations indicate that ACES consistently
outperforms current state-of-the-art SpMM accelerators, un-
derscoring its significant potential in enabling efficient com-
puting solutions for diverse applications.

Acknowledgments
We thank the anonymous reviewers for their helpful feed-
back. This research is supported in part by the National Sci-
ence Foundation under Grants CNS-2310422, CNS-2152497,
CCF-2029014, and CCF-2008907, and by the NSF-supported
Chameleon testbed facility. Additional support comes from
theNational Key R&DProgram of China (Grant 2018YFA0701500),
the Strategic Priority Research Program of the Chinese Acad-
emy of Sciences (CAS) (Grant XDB44000000), the National
Natural Science Foundation of China (Grants 62122076 and
62025404), and the Key Research Program of Frontier Sci-
ences, CAS (Grant ZDBS-LY-JSC012).

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Xiaoyang Lu, Boyu Long, Xiaoming Chen, Yinhe Han, Xian-He Sun

References
[1] Amit Agarwal, Kaushik Roy, and TN Vijaykumar. Exploring high

bandwidth pipelined cache architecture for scaled technology. In
Proceedings of the conference on Design, Automation and Test in Europe-
Volume 1, page 10778. IEEE Computer Society, 2003.

[2] Mikhail Asiatici and Paolo Ienne. Stop crying over your cache miss
rate: Handling efficiently thousands of outstanding misses in fpgas.
In Proceedings of the 2019 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, pages 310–319, 2019.

[3] Rajeev Balasubramonian, Andrew B Kahng, Naveen Muralimanohar,
Ali Shafiee, and Vaishnav Srinivas. CACTI 7: New tools for intercon-
nect exploration in innovative off-chip memories. ACM Transactions
on Architecture and Code Optimization (TACO), 14(2):1–25, 2017.

[4] Laszlo A. Belady. A study of replacement algorithms for a virtual-
storage computer. IBM Systems journal, 5(2):78–101, 1966.

[5] Maciej Besta, Florian Marending, Edgar Solomonik, and Torsten Hoe-
fler. Slimsell: A vectorizable graph representation for breadth-first
search. In 2017 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pages 32–41. IEEE, 2017.

[6] Aydin Buluç and Kamesh Madduri. Parallel breadth-first search on
distributed memory systems. In Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and
Analysis, pages 1–12, 2011.

[7] Andrew Canning, Giulia Galli, Francesco Mauri, Alessandro De Vita,
and Roberto Car. O (n) tight-binding molecular dynamics on massively
parallel computers: an orbital decomposition approach. Computer
Physics Communications, 94(2-3):89–102, 1996.

[8] Timothy M Chan. More algorithms for all-pairs shortest paths in
weighted graphs. In Proceedings of the thirty-ninth annual ACM sym-
posium on Theory of computing, pages 590–598, 2007.

[9] Steven Dalton, Nathan Bell, Luke Olson, and Michael Garland. Cusp:
Generic parallel algorithms for sparse matrix and graph computations,
2014.

[10] Steven Dalton, Luke Olson, and Nathan Bell. Optimizing sparse ma-
trix—matrix multiplication for the gpu. ACM Transactions on Mathe-
matical Software (TOMS), 41(4):1–20, 2015.

[11] Saptarsi Das, Arnab Roy, Kiran Kolar Chandrasekharan, Ankur Desh-
wal, and Sehwan Lee. A systolic dataflow based accelerator for CNNs.
In 2020 IEEE International Symposium on Circuits and Systems (ISCAS),
pages 1–5. IEEE, 2020.

[12] Timothy A Davis and Yifan Hu. The University of Florida sparse
matrix collection. ACM Transactions on Mathematical Software (TOMS),
38(1):1–25, 2011.

[13] Chunhua Deng, Siyu Liao, Yi Xie, Keshab K Parhi, Xuehai Qian, and
Bo Yuan. PermDNN: Efficient compressed DNN architecture with per-
muted diagonal matrices. In 2018 51st Annual IEEE/ACM international
symposium on microarchitecture (MICRO), pages 189–202. IEEE, 2018.

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language
understanding. arXiv preprint arXiv:1810.04805, 2018.

[15] Jianhua Gao, Weixing Ji, Fangli Chang, Shiyu Han, Bingxin Wei, Zem-
ing Liu, and Yizhuo Wang. A systematic survey of general sparse
matrix-matrix multiplication. ACM Computing Surveys, 55(12):1–36,
2023.

[16] Hasan Genc, Seah Kim, Alon Amid, Ameer Haj-Ali, Vighnesh Iyer,
Pranav Prakash, Jerry Zhao, Daniel Grubb, Harrison Liew, Howard
Mao, et al. Gemmini: Enabling systematic deep-learning architecture
evaluation via full-stack integration. In 2021 58th ACM/IEEE Design
Automation Conference (DAC), pages 769–774. IEEE, 2021.

[17] Gerasimos Gerogiannis, Serif Yesil, Damitha Lenadora, Dingyuan Cao,
Charith Mendis, and Josep Torrellas. SPADE: A Flexible and Scalable
Accelerator for SpMM and SDDMM. In Proceedings of the 50th Annual
International Symposium on Computer Architecture, pages 1–15, 2023.

[18] Sumanth Gudaparthi, Sarabjeet Singh, Surya Narayanan, Rajeev Bala-
subramonian, and Visvesh Sathe. CANDLES: Channel-aware novel
dataflow-microarchitecture co-design for low energy sparse neural
network acceleration. In 2022 IEEE International Symposium on high-
performance computer architecture (HPCA), pages 876–891. IEEE, 2022.

[19] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A
Horowitz, and William J Dally. EIE: Efficient inference engine on com-
pressed deep neural network. ACM SIGARCH Computer Architecture
News, 44(3):243–254, 2016.

[20] Song Han, Huizi Mao, and William J Dally. Deep compression: Com-
pressing deep neural networks with pruning, trained quantization and
huffman coding. arXiv preprint arXiv:1510.00149, 2015.

[21] Xin He, Subhankar Pal, Aporva Amarnath, Siying Feng, Dong-Hyeon
Park, Austin Rovinski, Haojie Ye, Yuhan Chen, Ronald Dreslinski,
and Trevor Mudge. Sparse-TPU: Adapting systolic arrays for sparse
matrices. In Proceedings of the 34th ACM international conference on
supercomputing, pages 1–12, 2020.

[22] Kartik Hegde, Hadi Asghari-Moghaddam, Michael Pellauer, Neal
Crago, Aamer Jaleel, Edgar Solomonik, Joel Emer, and Christopher W
Fletcher. Extensor: An accelerator for sparse tensor algebra. In Pro-
ceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, pages 319–333, 2019.

[23] John L Hennessy and David A Patterson. Computer Architecture: A
Quantitative Approach. Elsevier, 2019.

[24] Torsten Hoefler and Marc Snir. Generic topology mapping strategies
for large-scale parallel architectures. In Proceedings of the international
conference on Supercomputing, pages 75–84, 2011.

[25] Reza Hojabr, Ali Sedaghati, Amirali Sharifian, Ahmad Khonsari, and
Arrvindh Shriraman. Spaghetti: Streaming accelerators for highly
sparse gemm on fpgas. In 2021 IEEE International Symposium on High-
Performance Computer Architecture (HPCA), pages 84–96. IEEE, 2021.

[26] David A Huffman. A method for the construction of minimum-
redundancy codes. Proceedings of the IRE, 40(9):1098–1101, 1952.

[27] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav
Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,
Al Borchers, et al. In-datacenter performance analysis of a tensor pro-
cessing unit. In Proceedings of the 44th annual international symposium
on computer architecture, pages 1–12, 2017.

[28] David Kroft. Lockup-free instruction fetch/prefetch cache organization.
In Proceedings of the 8th annual symposium on Computer Architecture,
pages 81–87. IEEE Computer Society Press, 1981.

[29] David Kroft. Lockup-free instruction fetch/prefetch cache organization.
In 25 years of the international symposia on Computer architecture
(selected papers), pages 195–201, 1998.

[30] HT Kung, Bradley McDanel, and Sai Qian Zhang. Packing sparse
convolutional neural networks for efficient systolic array implementa-
tions: Column combining under joint optimization. In Proceedings of
the Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 821–834, 2019.

[31] Shuangchen Li, Dimin Niu, Krishna T Malladi, Hongzhong Zheng, Bob
Brennan, and Yuan Xie. Drisa: A dram-based reconfigurable in-situ
accelerator. In Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 288–301, 2017.

[32] Zhiyao Li, Jiaxiang Li, Taijie Chen, Dimin Niu, Hongzhong Zheng,
Yuan Xie, and Mingyu Gao. Spada: Accelerating Sparse Matrix Mul-
tiplication with Adaptive Dataflow. In Proceedings of the 28th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2, pages 747–761, 2023.

[33] Baoyuan Liu, Min Wang, Hassan Foroosh, Marshall Tappen, and Mari-
anna Pensky. Sparse convolutional neural networks. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages
806–814, 2015.

[34] Weifeng Liu and Brian Vinter. An efficient GPU general sparse matrix-
matrix multiplication for irregular data. In 2014 IEEE 28th International

ACES: Accelerating SpMM with Adaptive Flow and Concurrency-Aware Cache Optimizations ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Parallel and Distributed Processing Symposium, pages 370–381. IEEE,
2014.

[35] Xiaoyang Lu, Hamed Najafi, Jason Liu, and Xian-He Sun. CHROME:
Concurrency-aware holistic cache management framework with on-
line reinforcement learning. In 2024 IEEE International Symposium on
High-Performance Computer Architecture (HPCA). IEEE, 2024.

[36] Xiaoyang Lu, Rujia Wang, and Xian-He Sun. Apac: An accurate and
adaptive prefetch framework with concurrent memory access analysis.
In 2020 IEEE 38th International Conference on Computer Design (ICCD),
pages 222–229. IEEE, 2020.

[37] Xiaoyang Lu, Rujia Wang, and Xian-He Sun. Premier: A concurrency-
aware pseudo-partitioning framework for shared last-level cache. In
2021 IEEE 39th International Conference on Computer Design (ICCD),
pages 391–394. IEEE, 2021.

[38] Xiaoyang Lu, Rujia Wang, and Xian-He Sun. CARE: A concurrency-
aware enhanced lightweight cache management framework. In 2023
IEEE International Symposium on High-Performance Computer Archi-
tecture (HPCA), pages 1208–1220. IEEE, 2023.

[39] Francisco Muñoz-Martínez, Raveesh Garg, Michael Pellauer, José L
Abellán, Manuel E Acacio, and Tushar Krishna. Flexagon: A Multi-
Dataflow Sparse-Sparse Matrix Multiplication Accelerator for Effi-
cient DNN Processing. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 3, pages 252–265, 2023.

[40] Hamed Najafi, Jason Liu, Xiaoyang Lu, and Xian-He Sun. A general-
ized model for modern hierarchical memory system. In 2022 Winter
Simulation Conference (WSC), pages 2178–2188. IEEE, 2022.

[41] Maxim Naumov, L Chien, Philippe Vandermersch, and Ujval Kapasi.
Cusparse library. In GPU Technology Conference, 2010.

[42] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu
Huang, Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit
Gupta, Carole-JeanWu, Alisson G Azzolini, et al. Deep learning recom-
mendation model for personalization and recommendation systems.
arXiv preprint arXiv:1906.00091, 2019.

[43] Subhankar Pal, Jonathan Beaumont, Dong-Hyeon Park, Aporva Amar-
nath, Siying Feng, Chaitali Chakrabarti, Hun-Seok Kim, David Blaauw,
Trevor Mudge, and Ronald Dreslinski. Outerspace: An outer product
based sparse matrix multiplication accelerator. In 2018 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA),
pages 724–736. IEEE, 2018.

[44] Cosmin G Petra, Olaf Schenk, Miles Lubin, and Klaus Gärtner. An
augmented incomplete factorization approach for computing the Schur
complement in stochastic optimization. SIAM Journal on Scientific
Computing, 36(2):C139–C162, 2014.

[45] Eric Qin, Ananda Samajdar, Hyoukjun Kwon, Vineet Nadella, Sudar-
shan Srinivasan, Dipankar Das, Bharat Kaul, and Tushar Krishna.
Sigma: A sparse and irregular gemm accelerator with flexible intercon-
nects for dnn training. In 2020 IEEE International Symposium on High
Performance Computer Architecture (HPCA), pages 58–70. IEEE, 2020.

[46] Moinuddin K Qureshi, Daniel N Lynch, Onur Mutlu, and Yale N Patt.
A case for MLP-aware cache replacement. ACM SIGARCH Computer
Architecture News, 34(2):167–178, 2006.

[47] Raimund Seidel. On the all-pairs-shortest-path problem in unweighted
undirected graphs. Journal of computer and system sciences, 51(3):400–
403, 1995.

[48] Korey Sewell, Ronald G Dreslinski, Thomas Manville, Sudhir Satpathy,
Nathaniel Pinckney, Geoffrey Blake, Michael Cieslak, Reetuparna Das,
Thomas F Wenisch, Dennis Sylvester, et al. Swizzle-switch networks
for many-core systems. IEEE Journal on Emerging and Selected Topics
in Circuits and Systems, 2(2):278–294, 2012.

[49] Yakun Sophia Shao, Jason Clemons, Rangharajan Venkatesan, Brian
Zimmer, Matthew Fojtik, Nan Jiang, Ben Keller, Alicia Klinefelter,
Nathaniel Pinckney, Priyanka Raina, et al. Simba: Scaling deep-
learning inference with multi-chip-module-based architecture. In

Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, pages 14–27, 2019.

[50] Nitish Srivastava, Hanchen Jin, Jie Liu, David Albonesi, and Zhiru
Zhang. Matraptor: A sparse-sparse matrix multiplication accelerator
based on row-wise product. In 2020 53rd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO), pages 766–780. IEEE,
2020.

[51] Xian-He Sun and Xiaoyang Lu. The Memory-Bounded Speedup Model
and Its Impacts in Computing. Journal of Computer Science and Tech-
nology, 38(1):64–79, 2023.

[52] Xian-He Sun and Dawei Wang. Concurrent average memory access
time. Computer, 47(5):74–80, 2013.

[53] Robert M Tomasulo. An efficient algorithm for exploiting multiple
arithmetic units. IBM Journal of research and Development, 11(1):25–33,
1967.

[54] Dean M Tullsen, Susan J Eggers, and Henry M Levy. Simultaneous
multithreading: Maximizing on-chip parallelism. In ACM SIGARCH
Computer Architecture News, volume 23, pages 392–403. ACM, 1995.

[55] Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu,
Qing Wu, and Yajuan Wang. High-performance computing on the
intel xeon phi. Springer, 5:2, 2014.

[56] Rui Xu, Sheng Ma, Yaohua Wang, Xinhai Chen, and Yang Guo. Config-
urable multi-directional systolic array architecture for convolutional
neural networks. ACM Transactions on Architecture and Code Opti-
mization (TACO), 18(4):1–24, 2021.

[57] Ichitaro Yamazaki and Xiaoye S Li. On techniques to improve robust-
ness and scalability of a parallel hybrid linear solver. In International
Conference on High Performance Computing for Computational Science,
pages 421–434. Springer, 2010.

[58] Liang Yan, Mingzhe Zhang, Rujia Wang, Xiaoming Chen, Xingqi Zou,
Xiaoyang Lu, Yinhe Han, and Xian-He Sun. Copim: a concurrency-
aware pim workload offloading architecture for graph applications. In
2021 IEEE/ACM International Symposium on Low Power Electronics and
Design (ISLPED), pages 1–6. IEEE, 2021.

[59] Raphael Yuster and Uri Zwick. Detecting short directed cycles using
rectangular matrix multiplication and dynamic programming. In
SODA, volume 4, pages 254–260. Citeseer, 2004.

[60] Guowei Zhang, Nithya Attaluri, Joel S Emer, and Daniel Sanchez.
Gamma: Leveraging Gustavson’s algorithm to accelerate sparse matrix
multiplication. In Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, pages 687–701, 2021.

[61] Zhekai Zhang, Hanrui Wang, Song Han, and William J Dally. Sparch:
Efficient architecture for sparse matrix multiplication. In 2020 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), pages 261–274. IEEE, 2020.

[62] Xuda Zhou, Zidong Du, Qi Guo, Shaoli Liu, Chengsi Liu, Chao Wang,
Xuehai Zhou, Ling Li, Tianshi Chen, and Yunji Chen. Cambricon-S:
Addressing irregularity in sparse neural networks through a cooper-
ative software/hardware approach. In 2018 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 15–28.
IEEE, 2018.

[63] Zhaomin Zhu, Koh Johguchi, Hans Jürgen Mattausch, Tetsushi Koide,
Tai Hirakawa, and Tetsuo Hironaka. A novel hierarchical multi-port
cache. In Solid-State Circuits Conference, 2003. ESSCIRC’03. Proceedings
of the 29th European, pages 405–408. IEEE, 2003.

	Abstract
	1 Introduction
	2 Background
	2.1 Execution Flows for SpMM
	2.2 SpMM Accelerators
	2.3 Challenges and Opportunities

	3 ACES Architecture
	3.1 Overview of ACES
	3.2 Adaptive Execution Flow
	3.3 Processing Elements
	3.4 Schedulers
	3.5 Global Cache and PureFiber Policy
	3.6 Non-Blocking Buffer

	4 Evaluation Methodology
	5 Experiment Results
	5.1 Performance Comparisons
	5.2 Performance with Different Condensing Degrees
	5.3 Performance with Different Cache Replacement Policies
	5.4 Performance with Different NB Buffer Sizes
	5.5 Area and Power

	6 Additional Related Works
	7 Conclusion
	References

